IDEAS home Printed from https://ideas.repec.org/a/gam/jworld/v6y2025i3p115-d1725714.html
   My bibliography  Save this article

Geostatistical Analysis and Delineation of Groundwater Potential Zones for Their Implications in Irrigated Agriculture of Punjab Pakistan

Author

Listed:
  • Aamir Shakoor

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Imran Rasheed

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Muhammad Nouman Sattar

    (Department of Civil Engineering, National University of Technology (NUTECH), Islamabad 44000, Pakistan)

  • Akinwale T. Ogunrinde

    (Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Sabab Ali Shah

    (Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Dry Lands Salinization Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Department of Environment Science, Aror University of Art, Architecture, Design and Heritage, Sukkur 65200, Pakistan)

  • Hafiz Umar Farid

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Hareef Ahmed Keerio

    (Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212000, China)

  • Asim Qayyum Butt

    (University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Amjad Ali Khan

    (Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Dry Lands Salinization Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Malik Sarmad Riaz

    (Department of Civil Engineering, National University of Technology (NUTECH), Islamabad 44000, Pakistan)

Abstract

Groundwater is essential for irrigated agriculture, yet its use remains unsustainable in many regions worldwide. In countries like Pakistan, the situation is particularly pressing. The irrigated agriculture of Pakistan heavily relies on groundwater resources owing to limited canal-water availability. The groundwater quality in the region ranges from good to poor, with the lower-quality water adversely affecting soil structure and plant health, leading to reduced agricultural productivity. The delineation of quality zones with respect to irrigation parameters is thus crucial for optimizing its sustainable use and management. Therefore, this research study was carried out in the Lower Chenab Canal (LCC) irrigation system to assess the spatial distribution of groundwater quality. The geostatistical analysis was conducted using Gamma Design Software (GS+) and the Kriging interpolation method was applied within a Geographic Information System (GIS) framework to generate groundwater-quality maps. Semivariogram models were evaluated for major irrigation parameters such as electrical conductivity (EC), residual sodium carbonate (RSC), and sodium adsorption ratio (SAR) to identify the best fit for various Ordinary Kriging models. The spherical semivariogram model was the best fit for EC, while the exponential model best suited SAR and RSC. Overlay analysis was performed to produce combined water-quality maps. During the pre-monsoon season, 17.83% of the LCC area demonstrated good irrigation quality, while 42.84% showed marginal quality, and 39.33% was deemed unsuitable for irrigation. In the post-monsoon season, 17.30% of the area had good irrigation quality, 44.53% exhibited marginal quality, and 38.17% was unsuitable for irrigation. The study revealed that Electrical Conductivity (EC) was the primary factor affecting water quality, contributing to 71% of marginal and unsuitable conditions. In comparison, the Sodium Adsorption Ratio (SAR) accounted for 38% and Residual Sodium Carbonate (RSC) contributed 45%. Therefore, it is recommended that groundwater in unsuitable zones be subjected to artificial recharge methods and salt-tolerated crops to enhance its suitability for agricultural applications.

Suggested Citation

  • Aamir Shakoor & Imran Rasheed & Muhammad Nouman Sattar & Akinwale T. Ogunrinde & Sabab Ali Shah & Hafiz Umar Farid & Hareef Ahmed Keerio & Asim Qayyum Butt & Amjad Ali Khan & Malik Sarmad Riaz, 2025. "Geostatistical Analysis and Delineation of Groundwater Potential Zones for Their Implications in Irrigated Agriculture of Punjab Pakistan," World, MDPI, vol. 6(3), pages 1-21, August.
  • Handle: RePEc:gam:jworld:v:6:y:2025:i:3:p:115-:d:1725714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-4060/6/3/115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-4060/6/3/115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    2. M. Rodell & J. S. Famiglietti & D. N. Wiese & J. T. Reager & H. K. Beaudoing & F. W. Landerer & M.-H. Lo, 2018. "Emerging trends in global freshwater availability," Nature, Nature, vol. 557(7707), pages 651-659, May.
    3. Delgado, C. & Pacheco, J. & Cabrera, A. & Batllori, E. & Orellana, R. & Bautista, F., 2010. "Quality of groundwater for irrigation in tropical karst environment: The case of Yucatán, Mexico," Agricultural Water Management, Elsevier, vol. 97(10), pages 1423-1433, October.
    4. Jesús Barrena-González & Joaquín Francisco Lavado Contador & Manuel Pulido Fernández, 2022. "Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Gescilam S. M. Uchôa & Paulo Tarso S. Oliveira & André S. Ballarin & Antônio A. Meira Neto & Didier Gastmans & Scott Jasechko & Ying Fan & Edson C. Wendland, 2024. "Widespread potential for streamflow leakage across Brazil," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Anna Boser & Kelly Caylor & Ashley Larsen & Madeleine Pascolini-Campbell & John T. Reager & Tamma Carleton, 2024. "Field-scale crop water consumption estimates reveal potential water savings in California agriculture," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Ameneh Mianabadi & Hashem Derakhshan & Kamran Davary & Seyed Majid Hasheminia & Markus Hrachowitz, 2020. "A Novel Idea for Groundwater Resource Management during Megadrought Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1743-1755, March.
    6. Showmitra Kumar Sarkar & Fahad Alshehri & Shahfahad & Atiqur Rahman & Biswajeet Pradhan & Muhammad Shahab, 2025. "Mapping groundwater potentiality by using hybrid machine learning models under the scenario of climate variability: a national level study of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(8), pages 19799-19827, August.
    7. Pang-Wei Liu & James S. Famiglietti & Adam J. Purdy & Kyra H. Adams & Avery L. McEvoy & John T. Reager & Rajat Bindlish & David N. Wiese & Cédric H. David & Matthew Rodell, 2022. "Groundwater depletion in California’s Central Valley accelerates during megadrought," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Ben Stewart-Koster & Stuart E. Bunn & Pamela Green & Christopher Ndehedehe & Lauren S. Andersen & David I. Armstrong McKay & Xuemei Bai & Fabrice DeClerck & Kristie L. Ebi & Christopher Gordon & Joyee, 2024. "Living within the safe and just Earth system boundaries for blue water," Nature Sustainability, Nature, vol. 7(1), pages 53-63, January.
    9. Nadeem, Adeel Ahmad & Zha, Yuanyuan & Shi, Liangsheng & Zafar, Zeeshan & Ali, Shoaib & Zhang, Yufan & Altaf, Adnan Raza & Afzal, Muhammad & Zubair, Muhammad, 2023. "SAFER-ET based assessment of irrigation patterns and impacts on groundwater use in the central Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Ghosh, Bikramaditya & Gubareva, Mariya & Ghosh, Anandita & Paparas, Dimitrios & Vo, Xuan Vinh, 2024. "Food, energy, and water nexus: A study on interconnectedness and trade-offs," Energy Economics, Elsevier, vol. 133(C).
    11. Debra Perrone & Melissa M. Rohde & Courtney Hammond Wagner & Rebecca Anderson & Samantha Arthur & Ngodoo Atume & Meagan Brown & Lauren Esaki-Kua & Martha Gonzalez Fernandez & Kelly A. Garvey & Katheri, 2023. "Stakeholder integration predicts better outcomes from groundwater sustainability policy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Remus Prăvălie & Pasquale Borrelli & Panos Panagos & Cristiano Ballabio & Emanuele Lugato & Adrian Chappell & Gonzalo Miguez-Macho & Federico Maggi & Jian Peng & Mihai Niculiță & Bogdan Roșca & Cristi, 2024. "A unifying modelling of multiple land degradation pathways in Europe," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    14. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    15. Jonathan O. Hernandez, 2022. "Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades," Land, MDPI, vol. 11(11), pages 1-18, November.
    16. Le Duc Anh & Ho Huu Loc & Kim N. Irvine & Tran Thanh & Luong Quang Tuong, 2021. "The waterscape of groundwater exploitation for domestic uses in District 12, Ho Chi Minh City, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7652-7669, May.
    17. Kai Cui & Xiaotong Qin, 2023. "Landslide risk assessment of frozen soil slope in Qinghai Tibet Plateau during spring thawing period under the coupling effect of moisture and heat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2399-2416, February.
    18. Wang, Zongxia & Liu, Suxia, 2025. "Double disaggregation of the decline of terrestrial water storage for a highly cultivated dryland partially covered by glaciers," Agricultural Water Management, Elsevier, vol. 307(C).
    19. Huang, Hongrong & Zhuo, La & Wu, Yiping & Liu, Yilin & Ji, Xiangxiang & Wu, Pute, 2025. "Resilience assessment of interprovincial crop virtual water flow network in China," Agricultural Water Management, Elsevier, vol. 312(C).
    20. Talukder, Byomkesh & Hipel, Keith W., 2020. "Diagnosis of sustainability of trans-boundary water governance in the Great Lakes basin," World Development, Elsevier, vol. 129(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jworld:v:6:y:2025:i:3:p:115-:d:1725714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.