IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i5d10.1007_s10668-020-00938-0.html
   My bibliography  Save this article

The waterscape of groundwater exploitation for domestic uses in District 12, Ho Chi Minh City, Vietnam

Author

Listed:
  • Le Duc Anh

    (Nguyen Tat Thanh University)

  • Ho Huu Loc

    (Nanyang Technological University
    Nguyen Tat Thanh University)

  • Kim N. Irvine

    (Thammasat University)

  • Tran Thanh

    (Nguyen Tat Thanh University)

  • Luong Quang Tuong

    (Nguyen Tat Thanh University)

Abstract

This study applied the waterscapes framework to investigate the socio-political contestations associated with water use patterns and community–environment interactions in District 12, Ho Chi Minh City, Vietnam. In particular, groundwater resources were investigated via a mixed-method study combining water sampling, social surveys, a Groundwater Quality Index (GWQI), and GIS. In total, 33 groundwater samples were collected between June and August 2018, measuring pH, electrical conductivity, total dissolved solids, nitrite, nitrates, ammonia, sulfates, aluminum, iron, arsenic, and total coliform. An in-depth interview was conducted with a key stakeholder providing water service to the District, and 100 household surveys were administered via face-to-face interviews with community residents. Despite piped water availability throughout the district, we found that the community still utilizes groundwater for general domestic use. High concentrations of relevant pollutants were detected in the wells, substantially consistent with the respondents complains about the water smells and turbidity. The gastrointestinal disease was a known issue, yet less than a quarter of respondents associated these symptoms with the polluted water resources. Extensive groundwater use implies an economic artifact associated with the recent social experiences of the predominantly migrant worker community. Results from individual water quality measurements were incorporated into a GWQI following the Canadian Council of Ministers of the Environment approach. The calculated values were subsequently incorporated into GIS to visualize the spatial distributions of the groundwater quality across the study area, which were strongly associated with the results from the large-scale survey. The government of Vietnam has developed an official WQI guideline; however, it only addresses surface water with a different format than the GWQI applied in this study. Our GWQI henceforth contributed a prototype evaluation tool that could be applied in other urban areas of Vietnam to help assess groundwater resource health.

Suggested Citation

  • Le Duc Anh & Ho Huu Loc & Kim N. Irvine & Tran Thanh & Luong Quang Tuong, 2021. "The waterscape of groundwater exploitation for domestic uses in District 12, Ho Chi Minh City, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7652-7669, May.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00938-0
    DOI: 10.1007/s10668-020-00938-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00938-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00938-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cecilia Tortajada & Asit K. Biswas, 2017. "The rapidly changing global water management landscape," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(6), pages 849-851, November.
    2. Margaret W. Gitau & Jingqiu Chen & Zhao Ma, 2016. "Water Quality Indices as Tools for Decision Making and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2591-2610, June.
    3. Ho Huu Loc & Pham Minh Duyen & Thomas J. Ballatore & Nguyen Hoang My Lan & Ashim Gupta, 2017. "Applicability of sustainable urban drainage systems: an evaluation by multi-criteria analysis," Environment Systems and Decisions, Springer, vol. 37(3), pages 332-343, September.
    4. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan O. Hernandez, 2022. "Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades," Land, MDPI, vol. 11(11), pages 1-18, November.
    2. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Yadav, Bhagirath Mal & Santra, Priyabrata & Kumar, Mahesh & Shekhawat, Ravindra Singh & Reager, Madan Lal & Yadav, Shish Ram & Lal, B, 2022. "Alternative cropping systems and optimized management practices for saving groundwater and enhancing economic and environmental sustainability," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Hrozencik, R. Aaron, 2018. "Energy, Food, and Water; Electricity Cooperative Pricing and Groundwater Irrigation Decisions," 2018 Annual Meeting, August 5-7, Washington, D.C. 274322, Agricultural and Applied Economics Association.
    4. Buchs, Arnaud & Calvo-Mendieta, Iratxe & Petit, Olivier & Roman, Philippe, 2021. "Challenging the ecological economics of water: Social and political perspectives," Ecological Economics, Elsevier, vol. 190(C).
    5. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    6. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    7. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    8. Sears, Louis S. & Lawell, C.Y. Cynthia Lin & Torres, Gerald & Walter, M. Todd, 2022. "Moment-based Markov Equilibrium Estimation of High-Dimension Dynamic Games: An Application to Groundwater Management in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322187, Agricultural and Applied Economics Association.
    9. Kishore, Prabhat & Singh, Dharm Raj & Srivastava, Shivendra & Kumar, Pramod & Jha, Girish Kumar, 2021. "Impact of Subsoil Water Preservation Act, 2009 on Burgeoning Trend of Groundwater Depletion in Punjab, India," 2021 Conference, August 17-31, 2021, Virtual 315198, International Association of Agricultural Economists.
    10. Xin Deng & Lingzhi Zhang & Rong Xu & Miao Zeng & Qiang He & Dingde Xu & Yanbin Qi, 2022. "Do Cooperatives Affect Groundwater Protection? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    11. Lijuan Zhang & Jinxia Wang & Guangsheng Zhang & Qiuqiong Huang, 2016. "Impact of the methods of groundwater access on irrigation and crop yield in the North China Plain," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 8(4), pages 613-633, November.
    12. Lauffenburger, Zachary H. & Gurdak, Jason J. & Hobza, Chris & Woodward, Duane & Wolf, Cassandra, 2018. "Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA," Agricultural Water Management, Elsevier, vol. 204(C), pages 69-80.
    13. Ellen M. Bruno & Richard J. Sexton, 2020. "The Gains from Agricultural Groundwater Trade and the Potential for Market Power: Theory and Application," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 884-910, May.
    14. Ghorban Asgari & Ensieh Komijani & Abdolmotaleb Seid-Mohammadi & Mohammad Khazaei, 2021. "Assessment the Quality of Bottled Drinking Water Through Mamdani Fuzzy Water Quality Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5431-5452, December.
    15. Nkuiya, Bruno, 2020. "Tradeoffs between costly capacity investment and risk of regime shift," Economic Modelling, Elsevier, vol. 91(C), pages 117-127.
    16. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    17. Jie Zhu & Xiangyang Zhou & Jin Guo, 2023. "Sustainability of Agriculture: A Study of Digital Groundwater Supervision," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    18. Shahzeen Z. Attari & Kelsey Poinsatte-Jones & Kelsey Hinton, 2017. "Perceptions of water systems," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(3), pages 314-327, May.
    19. Bagstad, Kenneth J. & Ancona, Zachary H. & Hass, Julie & Glynn, Pierre D. & Wentland, Scott & Vardon, Michael & Fay, John, 2020. "Integrating physical and economic data into experimental water accounts for the United States: Lessons and opportunities," Ecosystem Services, Elsevier, vol. 45(C).
    20. Wegmann, Johannes & Mußhoff, Oliver, 2019. "Groundwater management institutions in the face of rapid urbanization – Results of a framed field experiment in Bengaluru, India," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00938-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.