IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35582-x.html
   My bibliography  Save this article

Groundwater depletion in California’s Central Valley accelerates during megadrought

Author

Listed:
  • Pang-Wei Liu

    (NASA Goddard Space Flight Center
    Science Systems and Applications, Inc)

  • James S. Famiglietti

    (University of Saskatchewan
    University of Saskatchewan
    Arizona State University)

  • Adam J. Purdy

    (California State University Monterey Bay)

  • Kyra H. Adams

    (California Institute of Technology)

  • Avery L. McEvoy

    (California Institute of Technology
    Rocky Mountain Institute)

  • John T. Reager

    (California Institute of Technology)

  • Rajat Bindlish

    (NASA Goddard Space Flight Center)

  • David N. Wiese

    (California Institute of Technology)

  • Cédric H. David

    (California Institute of Technology)

  • Matthew Rodell

    (NASA Goddard Space Flight Center)

Abstract

Groundwater provides nearly half of irrigation water supply, and it enables resilience during drought, but in many regions of the world, it remains poorly, if at all managed. In heavily agricultural regions like California’s Central Valley, where groundwater management is being slowly implemented over a 27-year period that began in 2015, groundwater provides two–thirds or more of irrigation water during drought, which has led to falling water tables, drying wells, subsiding land, and its long-term disappearance. Here we use nearly two decades of observations from NASA’s GRACE satellite missions and show that the rate of groundwater depletion in the Central Valley has been accelerating since 2003 (1.86 km3/yr, 1961–2021; 2.41 km3/yr, 2003–2021; 8.58 km3/yr, 2019–2021), a period of megadrought in southwestern North America. Results suggest the need for expedited implementation of groundwater management in the Central Valley to ensure its availability during the increasingly intense droughts of the future.

Suggested Citation

  • Pang-Wei Liu & James S. Famiglietti & Adam J. Purdy & Kyra H. Adams & Avery L. McEvoy & John T. Reager & Rajat Bindlish & David N. Wiese & Cédric H. David & Matthew Rodell, 2022. "Groundwater depletion in California’s Central Valley accelerates during megadrought," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35582-x
    DOI: 10.1038/s41467-022-35582-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35582-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35582-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    2. Byron D. Tapley & Michael M. Watkins & Frank Flechtner & Christoph Reigber & Srinivas Bettadpur & Matthew Rodell & Ingo Sasgen & James S. Famiglietti & Felix W. Landerer & Don P. Chambers & John T. Re, 2019. "Contributions of GRACE to understanding climate change," Nature Climate Change, Nature, vol. 9(5), pages 358-369, May.
    3. M. Rodell & J. S. Famiglietti & D. N. Wiese & J. T. Reager & H. K. Beaudoing & F. W. Landerer & M.-H. Lo, 2018. "Emerging trends in global freshwater availability," Nature, Nature, vol. 557(7707), pages 651-659, May.
    4. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    2. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Ameneh Mianabadi & Hashem Derakhshan & Kamran Davary & Seyed Majid Hasheminia & Markus Hrachowitz, 2020. "A Novel Idea for Groundwater Resource Management during Megadrought Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1743-1755, March.
    5. Yogita Sharma & Baljinder Kaur Sidana & Sunny Kumar & Samanpreet Kaur & Milkho Kaur Sekhon & Amrit Kaur Mahal & Sushant Mehan, 2023. "Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    6. Ram Fishman, 2018. "Groundwater depletion limits the scope for adaptation to increased rainfall variability in India," Climatic Change, Springer, vol. 147(1), pages 195-209, March.
    7. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Identifying the status of groundwater drought from a GRACE mascon model perspective across China during 2003–2018," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Ben Stewart-Koster & Stuart E. Bunn & Pamela Green & Christopher Ndehedehe & Lauren S. Andersen & David I. Armstrong McKay & Xuemei Bai & Fabrice DeClerck & Kristie L. Ebi & Christopher Gordon & Joyee, 2024. "Living within the safe and just Earth system boundaries for blue water," Nature Sustainability, Nature, vol. 7(1), pages 53-63, January.
    9. Yuming Lu & Bingfang Wu & Nana Yan & Weiwei Zhu & Hongwei Zeng & Linjiang Wang, 2021. "Method for Environmental Flows Regulation and Early Warning with Remote Sensing and Land Cover Data," Land, MDPI, vol. 10(11), pages 1-19, November.
    10. Joel Podgorski & Ruohan Wu & Biswajit Chakravorty & David A. Polya, 2020. "Groundwater Arsenic Distribution in India by Machine Learning Geospatial Modeling," IJERPH, MDPI, vol. 17(19), pages 1-17, September.
    11. Sahil Bhatia & S. P. Singh, 2023. "Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab," Sustainability, MDPI, vol. 15(22), pages 1-27, November.
    12. Debra Perrone & Melissa M. Rohde & Courtney Hammond Wagner & Rebecca Anderson & Samantha Arthur & Ngodoo Atume & Meagan Brown & Lauren Esaki-Kua & Martha Gonzalez Fernandez & Kelly A. Garvey & Katheri, 2023. "Stakeholder integration predicts better outcomes from groundwater sustainability policy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Xuehui Pi & Qiuqi Luo & Lian Feng & Yang Xu & Jing Tang & Xiuyu Liang & Enze Ma & Ran Cheng & Rasmus Fensholt & Martin Brandt & Xiaobin Cai & Luke Gibson & Junguo Liu & Chunmiao Zheng & Weifeng Li & B, 2022. "Mapping global lake dynamics reveals the emerging roles of small lakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Chinchu Mohan & Andrew W. Western & Madan Kumar Jha & Yongping Wei, 2022. "Global Assessment of Groundwater Stress Vis-à-Vis Sustainability of Irrigated Food Production," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    15. Biraj Kanti Mondal & Satiprasad Sahoo, 2022. "Evaluation of spatiotemporal dynamics of water storage changes at block level for sustainable water management in Howrah District of West Bengal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9519-9568, July.
    16. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    17. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    19. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    20. Jonathan O. Hernandez, 2022. "Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades," Land, MDPI, vol. 11(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35582-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.