IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1216-d675659.html
   My bibliography  Save this article

Method for Environmental Flows Regulation and Early Warning with Remote Sensing and Land Cover Data

Author

Listed:
  • Yuming Lu

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Bingfang Wu

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Nana Yan

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Weiwei Zhu

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Hongwei Zeng

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Linjiang Wang

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Environmental flows play a vital role in ecosystem and water resource management. The regulation and management of environmental flows can improve the function and stability of river and lake ecosystems. However, current methods for assessing environmental flows mainly emphasize water management, and there is no complete set of regulations or early warning systems, especially in arid and semiarid basins. In this study, we proposed a method for environmental flows regulation and early warning with remote sensing and land cover data and carried out a case study in the Yongding River Basin, which is a basin typical of arid and semiarid areas. The results show that from 2001 to 2014 the mean precipitation was 17.90 × 10 9 m 3 , and the mean water consumption was 19.42 × 10 9 m 3 , indicating that the basin water budget was clearly unbalanced and that there was an overall deficiency. Notably, from 2005 to 2014 and in 2014, the available consumable water was less than the water consumption required for human activities, which both showed a trend of further reduction; therefore, long-term and annual early warnings should have been issued. The methods applied in this study and the study outcomes could help in the development of comprehensive management and ecological restoration plans, further improving the ecological environments of river basins.

Suggested Citation

  • Yuming Lu & Bingfang Wu & Nana Yan & Weiwei Zhu & Hongwei Zeng & Linjiang Wang, 2021. "Method for Environmental Flows Regulation and Early Warning with Remote Sensing and Land Cover Data," Land, MDPI, vol. 10(11), pages 1-19, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1216-:d:675659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangzheng Deng & Fan Zhang & Zhan Wang & Xing Li & Tao Zhang, 2014. "An Extended Input Output Table Compiled for Analyzing Water Demand and Consumption at County Level in China," Sustainability, MDPI, vol. 6(6), pages 1-20, May.
    2. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    3. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    4. Wu, Bingfang & Jiang, Liping & Yan, Nana & Perry, Chris & Zeng, Hongwei, 2014. "Basin-wide evapotranspiration management: Concept and practical application in Hai Basin, China," Agricultural Water Management, Elsevier, vol. 145(C), pages 145-153.
    5. Mahdi Zarghami & Ahmad Abrishamchi & Reza Ardakanian, 2008. "Multi-criteria Decision Making for Integrated Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1017-1029, August.
    6. Barrow, Christopher J., 1998. "River basin development planning and management: A critical review," World Development, Elsevier, vol. 26(1), pages 171-186, January.
    7. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Author Correction: Global land change from 1982 to 2016," Nature, Nature, vol. 563(7732), pages 26-26, November.
    8. Bingfang Wu & Hongwei Zeng & Nana Yan & Miao Zhang, 2018. "Approach for Estimating Available Consumable Water for Human Activities in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2353-2368, May.
    9. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    2. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    3. Wei Fan & Xiankun Yang & Shirong Cai & Haidong Ou & Tao Zhou & Dakang Wang, 2024. "Land-Use/Cover Change and Driving Forces in the Pan-Pearl River Basin during the Period 1985–2020," Land, MDPI, vol. 13(6), pages 1-26, June.
    4. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    5. Min Wang & Kongtao Qin & Yanhong Jia & Xiaohan Yuan & Shuqi Yang, 2022. "Land Use Transition and Eco-Environmental Effects in Karst Mountain Area Based on Production-Living-Ecological Space: A Case Study of Longlin Multinational Autonomous County, Southwest China," IJERPH, MDPI, vol. 19(13), pages 1-23, June.
    6. Xiaotong Wang & Jiazheng Han & Jian Lin, 2022. "Response of Land Use and Net Primary Productivity to Coal Mining: A Case Study of Huainan City and Its Mining Areas," Land, MDPI, vol. 11(7), pages 1-16, June.
    7. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    8. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Yuji Hara & Chizuko Hirai & Yuki Sampei, 2022. "Mapping Uncounted Anthropogenic Fill Flows: Environmental Impact and Mitigation," Land, MDPI, vol. 11(11), pages 1-19, November.
    10. Liwei Xing & Liang Chi & Shuqing Han & Jianzhai Wu & Jing Zhang & Cuicui Jiao & Xiangyang Zhou, 2022. "Spatiotemporal Dynamics of Wetland in Dongting Lake Based on Multi-Source Satellite Observation Data during Last Two Decades," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    11. Qing Wang & Yuhang Xiao, 2022. "Has Urban Construction Land Achieved Low-Carbon Sustainable Development? A Case Study of North China Plain, China," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    12. Di Zhan & Bin Quan & Jia Liao, 2025. "The Spatiotemporal Evolution and Coupling Coordination of LUCC and Landscape Ecological Risk in Ecologically Vulnerable Areas: A Case Study of the Wanzhou–Dazhou–Kaizhou Region," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
    13. Berman, Nicolas & Couttenier, Mathieu & Leblois, Antoine & Soubeyran, Raphael, 2023. "Crop prices and deforestation in the tropics," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    14. Yiming Wang & Yunfeng Hu & Xiaoyu Niu & Huimin Yan & Lin Zhen, 2022. "Land Use/Cover Change and Its Driving Mechanism in Thailand from 2000 to 2020," Land, MDPI, vol. 11(12), pages 1-22, December.
    15. Kong, Xuesong & Fu, Mengxue & Zhao, Xiang & Wang, Jing & Jiang, Ping, 2022. "Ecological effects of land-use change on two sides of the Hu Huanyong Line in China," Land Use Policy, Elsevier, vol. 113(C).
    16. Liang, Han & Zhou, Yan & Cui, Yaoping & Dong, Jinwei & Gao, Zhenfei & Liu, Bailu & Xiao, Xiangming, 2024. "Is satellite-observed surface water expansion a good signal to China’s largest granary?," Agricultural Water Management, Elsevier, vol. 303(C).
    17. Yuan Gong & Xin Geng & Ping Wang & Shi Hu & Xunming Wang, 2024. "Impact of Urbanization-Driven Land Use Changes on Runoff in the Upstream Mountainous Basin of Baiyangdian, China: A Multi-Scenario Simulation Study," Land, MDPI, vol. 13(9), pages 1-22, August.
    18. Yanyan Li & Jinbing Zhang & Hui Zhu & Zhimin Zhou & Shan Jiang & Shuangyan He & Ying Zhang & Yicheng Huang & Mengfan Li & Guangrui Xing & Guanghui Li, 2023. "Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    19. Mohsen Khezri, 2025. "Impact of Various Land Cover Transformations on Climate Change: Insights from a Spatial Panel Analysis," Data, MDPI, vol. 10(2), pages 1-21, January.
    20. Wenfei Luan & Ge Li & Bo Zhong & Jianwei Geng & Xin Li & Hui Li & Shi He, 2023. "Improving Dryland Urban Land Cover Classification Accuracy Using a Classical Convolution Neural Network," Land, MDPI, vol. 12(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1216-:d:675659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.