IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005985.html
   My bibliography  Save this article

Double disaggregation of the decline of terrestrial water storage for a highly cultivated dryland partially covered by glaciers

Author

Listed:
  • Wang, Zongxia
  • Liu, Suxia

Abstract

Dramatic declines of terrestrial water storage (TWS) have been found in global drylands, the home to more than a third of the world’s population. TWS variations can be internally disaggregated into changes in hydrological components or externally disaggregated into impacts of climate change and human activities. This study proposed an innovative double disaggregation framework to improve the explanations of TWS depletion in a highly cultivated dryland partially covered by glaciers, i.e., the northern slope of the Tianshan Mountains (NSTM). A widespread and significant decline of TWS was detected in NSTM. Besides the Tianshan Mountains, TWS also declined significantly downstream where it should have increased given the substantive glacier meltwater supply from upstream, implying that the evolution of TWS in NSTM has probably deviated from natural manners. Pixel-wise internal disaggregation indicated that groundwater storage was the predominant hydrological component leading to TWS depletion in most of the NSTM except for glacier-covered areas. Additionally, basin-averaged external disaggregation revealed a more dramatic TWS depletion rate induced solely by human activities compared to GRACE observations, suggesting that human activities have dominated TWS decline. To be specific, substantial withdrawal of groundwater for irrigation enhanced regional evapotranspiration, which subsequently accelerated the dissipation of TWS, and therefore counteracted and even reversed the potential increase in TWS downstream. The double disaggregation framework facilitated the holistic explanations of TWS decline in NSTM, and was expected to serve as a useful tool for attributing TWS variations in other drylands worldwide.

Suggested Citation

  • Wang, Zongxia & Liu, Suxia, 2025. "Double disaggregation of the decline of terrestrial water storage for a highly cultivated dryland partially covered by glaciers," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005985
    DOI: 10.1016/j.agwat.2024.109262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. M. Rodell & J. S. Famiglietti & D. N. Wiese & J. T. Reager & H. K. Beaudoing & F. W. Landerer & M.-H. Lo, 2018. "Emerging trends in global freshwater availability," Nature, Nature, vol. 557(7707), pages 651-659, May.
    2. Romain Hugonnet & Robert McNabb & Etienne Berthier & Brian Menounos & Christopher Nuth & Luc Girod & Daniel Farinotti & Matthias Huss & Ines Dussaillant & Fanny Brun & Andreas Kääb, 2021. "Accelerated global glacier mass loss in the early twenty-first century," Nature, Nature, vol. 592(7856), pages 726-731, April.
    3. Xueying Li & Di Long & Bridget R. Scanlon & Michael E. Mann & Xingdong Li & Fuqiang Tian & Zhangli Sun & Guangqian Wang, 2022. "Climate change threatens terrestrial water storage over the Tibetan Plateau," Nature Climate Change, Nature, vol. 12(9), pages 801-807, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhili Wang & Yadong Lei & Huizheng Che & Bo Wu & Xiaoye Zhang, 2024. "Aerosol forcing regulating recent decadal change of summer water vapor budget over the Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Lu, Xiaoyao & Zou, Minzhong & Gan, Gary & Kang, Shaozhong, 2025. "Excessive irrigation-driven greening has triggered water shortages and compromised sustainability," Agricultural Water Management, Elsevier, vol. 311(C).
    3. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    4. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    5. Kai Cui & Xiaotong Qin, 2023. "Landslide risk assessment of frozen soil slope in Qinghai Tibet Plateau during spring thawing period under the coupling effect of moisture and heat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2399-2416, February.
    6. Berthold, Anne & Cologna, Viktoria & Siegrist, Michael, 2022. "The influence of scarcity perception on people's pro-environmental behavior and their readiness to accept new sustainable technologies," Ecological Economics, Elsevier, vol. 196(C).
    7. Huang, Hongrong & Zhuo, La & Wu, Yiping & Liu, Yilin & Ji, Xiangxiang & Wu, Pute, 2025. "Resilience assessment of interprovincial crop virtual water flow network in China," Agricultural Water Management, Elsevier, vol. 312(C).
    8. Talukder, Byomkesh & Hipel, Keith W., 2020. "Diagnosis of sustainability of trans-boundary water governance in the Great Lakes basin," World Development, Elsevier, vol. 129(C).
    9. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Ø. Foss & J. Maton & G. Moholdt & L. S. Schmidt & D. A. Sutherland & I. Fer & F. Nilsen & J. Kohler & A. Sundfjord, 2024. "Ocean warming drives immediate mass loss from calving glaciers in the high Arctic," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Huping Wang & Zhao Wang & Haikui Yin & Chao Jin & Xiaogang Zhang & Langtao Liu, 2023. "CO 2 Flow Characteristics in Macro-Scale Coal Sample: Effect of CO 2 Injection Pressure and Buried Depth," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    12. José Gescilam S. M. Uchôa & Paulo Tarso S. Oliveira & André S. Ballarin & Antônio A. Meira Neto & Didier Gastmans & Scott Jasechko & Ying Fan & Edson C. Wendland, 2024. "Widespread potential for streamflow leakage across Brazil," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Hillary Henao-Toro & Juan F. Pérez & Ainhoa Rubio-Clemente, 2024. "Malachite Green Dye Removal in Water by Using Biochar Produced from Pinus patula Pellet Gasification in a Reverse Downdraft Reactor," Sustainability, MDPI, vol. 16(24), pages 1-16, December.
    14. Zhu, Zichun & Fu, Congsheng & Wu, Huawu & Wu, Haohao & Zhang, Haixia & Cao, Yang & Xia, Ye, 2023. "What influences does grazing bring about to stream nutrient fluxes in alpine meadows?," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Da Mata, Daniel & Emanuel, Lucas & Pereira, Vitor & Sampaio, Breno, 2023. "Climate adaptation policies and infant health: Evidence from a water policy in Brazil," Journal of Public Economics, Elsevier, vol. 220(C).
    16. Casagrande, Dieison & Emanuel, Lucas & Freitas, Carlos & Lima, Alex & Nishimura, Fábio & Oliveira, Felipe, 2024. "Public food procurement and production: Evidence of the food acquisition program in Brazil," Food Policy, Elsevier, vol. 126(C).
    17. Hengshuai Gao & Wenbao Li & Sheng Zhang & Yulong Tao & Xin Guo, 2024. "Hydraulic Relationship between Hulun Lake and Cretaceous Confined Aquifer Using Hydrochemistry and Isotopic Data," Sustainability, MDPI, vol. 16(5), pages 1-14, March.
    18. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    20. Youliang Jin & Chen Cheng & Huixiang Zeng, 2020. "Is evil rewarded with evil? The market penalty effect of corporate environmentally irresponsible events," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 846-871, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.