IDEAS home Printed from https://ideas.repec.org/a/gam/jtourh/v4y2023i2p15-256d1122556.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Big Data Analytics and Firm Performance in the Hotel Sector

Author

Listed:
  • Tiago Carneiro

    (ISEG Business School of Economics and Management, University of Lisbon, Rua do Quelhas 6, 1200-781 Lisboa, Portugal)

  • Winnie Ng Picoto

    (ADVANCE/CSG & ISEG Business School of Economics and Management, University of Lisbon, Rua do Quelhas 6, 1200-781 Lisboa, Portugal)

  • Inês Pinto

    (ADVANCE/CSG & ISEG Business School of Economics and Management, University of Lisbon, Rua do Quelhas 6, 1200-781 Lisboa, Portugal)

Abstract

Big data (BD) analytics play a key role in helping hotel firms gain competitive advantages and achieve superior performance. The purpose of this study was to determine which factors encourage the use of big data analytics (BDA) by hotel firms and the impact of BDA on hotel firms’ performance. Understanding the impacts of big data analytics in the hotel sector is important to help hotel managers use big data for creating business value by increasing hotel performance. A research model was developed and tested with data collected through a questionnaire sent to hotel managers in a European country and analysed with PLS. The results indicate that organisational readiness and competitive pressure encourage the use of BDA through the mediating role of top management support. The findings also indicate that the use of BDA can create business value by increasing the main dimensions of hotel performance: financial performance, customer retention rate, and hotel reputation.

Suggested Citation

  • Tiago Carneiro & Winnie Ng Picoto & Inês Pinto, 2023. "Big Data Analytics and Firm Performance in the Hotel Sector," Tourism and Hospitality, MDPI, vol. 4(2), pages 1-13, April.
  • Handle: RePEc:gam:jtourh:v:4:y:2023:i:2:p:15-256:d:1122556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-5768/4/2/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-5768/4/2/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    2. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    3. Lee, In, 2017. "Big data: Dimensions, evolution, impacts, and challenges," Business Horizons, Elsevier, vol. 60(3), pages 293-303.
    4. Paul Chwelos & Izak Benbasat & Albert S. Dexter, 2001. "Research Report: Empirical Test of an EDI Adoption Model," Information Systems Research, INFORMS, vol. 12(3), pages 304-321, September.
    5. David J. Teece & Gary Pisano & Amy Shuen, 1997. "Dynamic capabilities and strategic management," Strategic Management Journal, Wiley Blackwell, vol. 18(7), pages 509-533, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    2. Liedong, Tahiru Azaaviele & Rajwani, Tazeeb & Lawton, Thomas C., 2020. "Information and nonmarket strategy: Conceptualizing the interrelationship between big data and corporate political activity," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    3. Amankwah-Amoah, Joseph, 2019. "Big data analytics and business failures in data-Rich environments: An organizing framework," MPRA Paper 91264, University Library of Munich, Germany.
    4. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    5. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    6. Maniyassouwe Amana & Pingfeng Liu & Mona Alariqi, 2022. "Value Creation and Capture with Big Data in Smart Phones Companies," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    7. Oesterreich, Thuy Duong & Anton, Eduard & Teuteberg, Frank & Dwivedi, Yogesh K, 2022. "The role of the social and technical factors in creating business value from big data analytics: A meta-analysis," Journal of Business Research, Elsevier, vol. 153(C), pages 128-149.
    8. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Luo, Zongwei & Wamba, Samuel Fosso & Roubaud, David, 2019. "Can big data and predictive analytics improve social and environmental sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 534-545.
    9. Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
    10. Hassani, Abdeslam & Mosconi, Elaine, 2022. "Social media analytics, competitive intelligence, and dynamic capabilities in manufacturing SMEs," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    11. Nam, Dalwoo & Lee, Junyeong & Lee, Heeseok, 2019. "Business analytics use in CRM: A nomological net from IT competence to CRM performance," International Journal of Information Management, Elsevier, vol. 45(C), pages 233-245.
    12. Aleš Popovič & Ray Hackney & Rana Tassabehji & Mauro Castelli, 0. "The impact of big data analytics on firms’ high value business performance," Information Systems Frontiers, Springer, vol. 0, pages 1-14.
    13. Richly, Marc A., 2022. "Big Data Analytics Capabilities: A Systematic Literature Review on Necessary Skills to Succeed in Big Data Analytics," Junior Management Science (JUMS), Junior Management Science e. V., vol. 7(5), pages 1224-1241.
    14. Marfo, John Serbe & Boateng, Richard, 2015. "Developing big data capabilities in developing countries: Evidence from a cross industry study in Ghana," 2015 Regional ITS Conference, Los Angeles 2015 146342, International Telecommunications Society (ITS).
    15. Hillol Bala & Viswanath Venkatesh, 2007. "Assimilation of Interorganizational Business Process Standards," Information Systems Research, INFORMS, vol. 18(3), pages 340-362, September.
    16. Shahriar Akter & Katina Michael & Muhammad Rajib Uddin & Grace McCarthy & Mahfuzur Rahman, 2022. "Transforming business using digital innovations: the application of AI, blockchain, cloud and data analytics," Annals of Operations Research, Springer, vol. 308(1), pages 7-39, January.
    17. Weihong Xie & Qian Zhang & Yuyao Lin & Zhong Wang & Zhongshun Li, 2024. "The Effect of Big Data Capability on Organizational Innovation: a Resource Orchestration Perspective," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 3767-3791, March.
    18. Zhang, Yucheng & Hou, Zhongwei & Yang, Feifei & Yang, Miles M. & Wang, Zhiling, 2021. "Discovering the evolution of resource-based theory: Science mapping based on bibliometric analysis," Journal of Business Research, Elsevier, vol. 137(C), pages 500-516.
    19. Candice WALLS & Brian BARNARD, 2020. "Success Factors of Big Data to Achieve Organisational Performance: Theoretical Perspectives," Expert Journal of Business and Management, Sprint Investify, vol. 8(1), pages 1-16.
    20. Venugopal Gopalakrishna-Remani & Robert Paul Jones & Kerri M. Camp, 2019. "Levels of EMR Adoption in U.S. Hospitals: An Empirical Examination of Absorptive Capacity, Institutional Pressures, Top Management Beliefs, and Participation," Information Systems Frontiers, Springer, vol. 21(6), pages 1325-1344, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jtourh:v:4:y:2023:i:2:p:15-256:d:1122556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.