IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p937-d100287.html
   My bibliography  Save this article

Agronomic Factors Affecting the Potential of Sorghum as a Feedstock for Bioethanol Production in the Kanto Region, Japan

Author

Listed:
  • Shoko Ishikawa

    (Division of Crop Production Systems, Central Region Agricultural Research Center, NARO, Tsukuba 305-8666, Japan)

  • Takayuki Tsukamoto

    (Department of Farm Labor and Environmental Engineering, Institute of Agricultural Machinery, NARO, Saitama, 331-8537, Japan)

  • Hitoshi Kato

    (Division of Lowland Farming, Central Region Agricultural Research Center, NARO, Joetsu 943-0193, Japan)

  • Kazuto Shigeta

    (Division of Crop Production Systems, Central Region Agricultural Research Center, NARO, Tsukuba 305-8666, Japan)

  • Ken-ichi Yakushido

    (Division of Livestock and Grassland Research, Kyushu Okinawa Agricultural Research Center, NARO, Koshi 861-1192, Japan)

Abstract

In the Kanto region in Japan, the possibilities of running a bio-ethanol plant from rice straw has been assessed and sorghum production has been considered as a necessary part of the system. Two field experiments were conducted in 2012 and 2013 at the NARO—Agricultural Research Center in Tsukuba, Ibaraki to estimate yielding ability of sorghum in the Kanto region. Two cultivars of sweet sorghum and one of grain sorghum were sown using a pneumatic seeder. Above-ground dry matter (DM) yield ranged from 1.03 to 1.82 kg m −2 for the sorgo type cultivars and from 0.70 to 1.18 kg m −2 for the grain type cultivar. The observed yields were lower than the simulated potential yields, i.e., 1.61 to 2.66 kg m −2 , indicating that biomass production was restricted in this study. Stem brix values for the sweet sorghum cultivars were generally low (3.3–16.2%) compared with the values reported in the literature. It appears that there is still room to improve the field management of sorghum to minimize the gap between the potential and actual production observed in these experiments.

Suggested Citation

  • Shoko Ishikawa & Takayuki Tsukamoto & Hitoshi Kato & Kazuto Shigeta & Ken-ichi Yakushido, 2017. "Agronomic Factors Affecting the Potential of Sorghum as a Feedstock for Bioethanol Production in the Kanto Region, Japan," Sustainability, MDPI, vol. 9(6), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:937-:d:100287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moreira, Jose R. & Goldemberg, Jose, 1999. "The alcohol program," Energy Policy, Elsevier, vol. 27(4), pages 229-245, April.
    2. Tran Dang Xuan & Nguyen Thi Phuong & Do Tan Khang & Tran Dang Khanh, 2015. "Influence of Sowing Times, Densities, and Soils to Biomass and Ethanol Yield of Sweet Sorghum," Sustainability, MDPI, vol. 7(9), pages 1-22, August.
    3. Klaus Butterbach-Bahl & Ralf Kiese, 2013. "Biofuel production on the margins," Nature, Nature, vol. 493(7433), pages 483-484, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahul Hiremath & Bimlesh Kumar & P. Balachandra & N. Ravindranath, 2010. "Sustainable bioenergy production strategies for rural India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(6), pages 571-590, August.
    2. Crago, Christine L. & Khanna, Madhu & Barton, Jason & Giuliani, Eduardo & Amaral, Weber, 2010. "Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol," Energy Policy, Elsevier, vol. 38(11), pages 7404-7415, November.
    3. La Rovere, Emilio Lèbre & Pereira, André Santos & Simões, André Felipe, 2011. "Biofuels and Sustainable Energy Development in Brazil," World Development, Elsevier, vol. 39(6), pages 1026-1036, June.
    4. Ali Arababadi & Stephan Leyer & Joachim Hansen & Reza Arababadi, 2021. "Characterizing the Theory of Spreading Electric Vehicles in Luxembourg," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    5. Goldemberg, José & Guardabassi, Patricia, 2009. "Are biofuels a feasible option?," Energy Policy, Elsevier, vol. 37(1), pages 10-14, January.
    6. Santos, Omar Inacio Benedetti & Rathmann, Regis, 2009. "Identification and analysis of local and regional impacts from the introduction of biodiesel production in the state of Piauí," Energy Policy, Elsevier, vol. 37(10), pages 4011-4020, October.
    7. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    8. Walter, Arnaldo & Dolzan, Paulo & Quilodrán, Oscar & de Oliveira, Janaína G. & da Silva, Cinthia & Piacente, Fabrício & Segerstedt, Anna, 2011. "Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects," Energy Policy, Elsevier, vol. 39(10), pages 5703-5716, October.
    9. SCARAMUCCI José A. & PERIN Clovis & PULINO Petronio & BORDONI Orlando F. & DA CUNHA Marcelo P. & CORTEZ Luís A. B., 2010. "Energy from Sugarcane Bagasse under Electricity Rationing in Brazil: A Computable General Equilibrium Model," EcoMod2003 330700133, EcoMod.
    10. Clovis Zapata & Paul Nieuwenhuis, 2009. "Driving on liquid sunshine – the Brazilian biofuel experience: a policy driven analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 18(8), pages 528-541, December.
    11. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    12. Ralph Sims, 2003. "Bioenergy to mitigate for climate change and meet the needs of society, the economy and the environment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(4), pages 349-370, December.
    13. -, 2007. "Renewable energy sources in Latin America and the Caribbean: two years after the Bonn Conference," Documentos de Proyectos 3563, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    14. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    15. Furtado, André Tosi & Scandiffio, Mirna Ivonne Gaya & Cortez, Luis Augusto Barbosa, 2011. "The Brazilian sugarcane innovation system," Energy Policy, Elsevier, vol. 39(1), pages 156-166, January.
    16. Gallagher, Kelly Sims, 2006. "Limits to leapfrogging in energy technologies? Evidence from the Chinese automobile industry," Energy Policy, Elsevier, vol. 34(4), pages 383-394, March.
    17. Goldemberg, José & Coelho, Suani Teixeira & Guardabassi, Patricia, 2008. "The sustainability of ethanol production from sugarcane," Energy Policy, Elsevier, vol. 36(6), pages 2086-2097, June.
    18. Gong, Chang-Ming & Huang, Kuo & Jia, Jing-Long & Su, Yan & Gao, Qing & Liu, Xun-Jun, 2011. "Regulated emissions from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 36(5), pages 3379-3387.
    19. Niven, Robert K., 2005. "Ethanol in gasoline: environmental impacts and sustainability review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 535-555, December.
    20. Simla Tokgoz & Amani Elobeid, 2006. "Analysis of the Link between Ethanol, Energy, and Crop Markets, An," Center for Agricultural and Rural Development (CARD) Publications 06-wp435, Center for Agricultural and Rural Development (CARD) at Iowa State University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:937-:d:100287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.