IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p1057-d101868.html
   My bibliography  Save this article

Technology Credit Scoring Based on a Quantification Method

Author

Listed:
  • Yonghan Ju

    (Department of Information & Industrial Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749, Korean)

  • So Young Sohn

    (Department of Information & Industrial Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749, Korean)

Abstract

Credit scoring models are usually formulated by fitting the probability of loan default as a function of individual evaluation attributes. Typically, these attributes are measured using a Likert-type scale, but are treated as interval scale explanatory variables to predict loan defaults. Existing models also do not distinguish between types of default, although they vary: default by an insolvent company and default by an insolvent debtor. This practice can bias the results. In this paper, we applied Quantification Method II, a categorical version of canonical correlation analysis, to determine the relationship between two sets of categorical variables: a set of default types and a set of evaluation attributes. We distinguished between two types of loan default patterns based on quantification scores. In the first set of quantification scores, we found knowledge management, new technology development, and venture registration as important predictors of default from non-default status. Based on the second quantification score, we found that the technology and profitability factors influence loan defaults due to an insolvent company. Finally, we proposed a credit-risk rating model based on the quantification score.

Suggested Citation

  • Yonghan Ju & So Young Sohn, 2017. "Technology Credit Scoring Based on a Quantification Method," Sustainability, MDPI, vol. 9(6), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1057-:d:101868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/1057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/1057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sohn, So Young & Kim, Hong Sik, 2007. "Random effects logistic regression model for default prediction of technology credit guarantee fund," European Journal of Operational Research, Elsevier, vol. 183(1), pages 472-478, November.
    2. T H Moon & S Y Sohn, 2010. "Technology credit scoring model considering both SME characteristics and economic conditions: The Korean case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 666-675, April.
    3. S Y Sohn & M K Doo & Y H Ju, 2012. "Pattern recognition for evaluator errors in a credit scoring model for technology-based SMEs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1051-1064, August.
    4. Berger, Allen N & Frame, W Scott & Miller, Nathan H, 2005. "Credit Scoring and the Availability, Price, and Risk of Small Business Credit," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(2), pages 191-222, April.
    5. Berger, Allen N. & Udell, Gregory F., 2006. "A more complete conceptual framework for SME finance," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 2945-2966, November.
    6. Eun Jin Han & So Young Sohn, 2017. "Firms’ Negative Perceptions on Patents, Technology Management Strategies, and Subsequent Performance," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    7. Carey, Mark & Hrycay, Mark, 2001. "Parameterizing credit risk models with rating data," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 197-270, January.
    8. T H Moon & Y Kim & S Y Sohn, 2011. "Technology credit rating system for funding SMEs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 608-615, April.
    9. Choi, Jin Young & Lee, Jong Ha & Sohn, So Young, 2009. "Impact analysis for national R&D funding in science and technology using quantification method II," Research Policy, Elsevier, vol. 38(10), pages 1534-1544, December.
    10. Chen, Su-Jane & Jordan, Bradford D., 1993. "Some empirical tests in the arbitrage pricing theory: Macro variables vs. derived factors," Journal of Banking & Finance, Elsevier, vol. 17(1), pages 65-89, February.
    11. Ju, Yonghan & Jeon, Song Yi & Sohn, So Young, 2015. "Behavioral technology credit scoring model with time-dependent covariates for stress test," European Journal of Operational Research, Elsevier, vol. 242(3), pages 910-919.
    12. Moon, Tae Hee & Sohn, So Young, 2008. "Technology scoring model for reflecting evaluator's perception within confidence limits," European Journal of Operational Research, Elsevier, vol. 184(3), pages 981-989, February.
    13. Luca Salvati & Marco Zitti & Margherita Carlucci, 2014. "Territorial Systems, Regional Disparities and Sustainability: Economic Structure and Soil Degradation in Italy," Sustainability, MDPI, vol. 6(5), pages 1-19, May.
    14. You Zhu & Chi Xie & Bo Sun & Gang-Jin Wang & Xin-Guo Yan, 2016. "Predicting China’s SME Credit Risk in Supply Chain Financing by Logistic Regression, Artificial Neural Network and Hybrid Models," Sustainability, MDPI, vol. 8(5), pages 1-17, May.
    15. Yonghan Ju & So Young Sohn, 2015. "Stress test for a technology credit guarantee fund based on survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 463-475, March.
    16. So Sohn & Yoon Kim, 2013. "Behavioral credit scoring model for technology-based firms that considers uncertain financial ratios obtained from relationship banking," Small Business Economics, Springer, vol. 41(4), pages 931-943, December.
    17. H J Jeon & S Y Sohn, 2008. "The risk management for technology credit guarantee fund," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1624-1632, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eungchan Kim & Young Seok Ock & Seung-Jun Shin & Wonchul Seo, 2018. "An Approach to Generating Reference Information for Technology Evaluation," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    2. Won Sang Lee & So Young Sohn, 2017. "Identifying Emerging Trends of Financial Business Method Patents," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
    3. Bo Kyeong Lee & So Young Sohn, 2017. "A Credit Scoring Model for SMEs Based on Accounting Ethics," Sustainability, MDPI, vol. 9(9), pages 1-15, September.
    4. Tingqiang Chen & Suyang Wang, 2023. "Incomplete information model of credit default of micro and small enterprises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2956-2974, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Kyeong Lee & So Young Sohn, 2017. "A Credit Scoring Model for SMEs Based on Accounting Ethics," Sustainability, MDPI, vol. 9(9), pages 1-15, September.
    2. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    3. So Sohn & Yoon Kim, 2013. "Behavioral credit scoring model for technology-based firms that considers uncertain financial ratios obtained from relationship banking," Small Business Economics, Springer, vol. 41(4), pages 931-943, December.
    4. Yonghan Ju & So Young Sohn, 2015. "Stress test for a technology credit guarantee fund based on survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 463-475, March.
    5. Ju, Yong Han & Sohn, So Young, 2014. "Updating a credit-scoring model based on new attributes without realization of actual data," European Journal of Operational Research, Elsevier, vol. 234(1), pages 119-126.
    6. Won Sang Lee & So Young Sohn, 2017. "Identifying Emerging Trends of Financial Business Method Patents," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
    7. Ju, Yonghan & Jeon, Song Yi & Sohn, So Young, 2015. "Behavioral technology credit scoring model with time-dependent covariates for stress test," European Journal of Operational Research, Elsevier, vol. 242(3), pages 910-919.
    8. Pranith K. Roy & Krishnendu Shaw, 2023. "A credit scoring model for SMEs using AHP and TOPSIS," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 372-391, January.
    9. Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
    10. Jong Wook Lee & So Young Sohn, 2021. "Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-11, December.
    11. Berger, Allen N. & Boot, Arnoud W.A., 2024. "Financial intermediation services and competition analyses: Review and paths forward for improvement," Journal of Financial Intermediation, Elsevier, vol. 57(C).
    12. Berger, Allen N. & Espinosa-Vega, Marco A. & Frame, W. Scott & Miller, Nathan H., 2011. "Why do borrowers pledge collateral? New empirical evidence on the role of asymmetric information," Journal of Financial Intermediation, Elsevier, vol. 20(1), pages 55-70, January.
    13. Yang Yang & Xuezheng Chen & Jing Gu & Hamido Fujita, 2019. "Alleviating Financing Constraints of SMEs through Supply Chain," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    14. Mou, W.M. & Wong, W.-K. & McAleer, M.J., 2018. "Financial Credit Risk and Core Enterprise Supply Chains," Econometric Institute Research Papers EI2018-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    16. Geoffroy Enjolras & Philippe Madiès, 2019. "The determinants of loan acceptance: a case study of French farms," Economics Bulletin, AccessEcon, vol. 39(1), pages 358-371.
    17. Geoffroy Enjolras & Philippe Madiès, 2020. "The role of bank analysts and scores in the prediction of financial distress: Evidence from French farms," Economics Bulletin, AccessEcon, vol. 40(4), pages 2978-2993.
    18. Udell, Gregory F., 2008. "What's in a relationship The case of commercial lending," Business Horizons, Elsevier, vol. 51(2), pages 93-103.
    19. Delgado, J. & Salas, V. & Saurina, J., 2007. "Joint size and ownership specialization in bank lending," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3563-3583, December.
    20. T H Moon & Y Kim & S Y Sohn, 2011. "Technology credit rating system for funding SMEs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 608-615, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1057-:d:101868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.