IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p590-d72630.html
   My bibliography  Save this article

The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico

Author

Listed:
  • Jorge Lucero-Álvarez

    (Advanced Materials Research Center (CIMAV-Chihuahua), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109, México)

  • Norma A. Rodríguez-Muñoz

    (Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Insurgentes Sur 1582, Ciudad de México 03940, México
    Advanced Materials Research Center (CIMAV-Durango), Victoria 147 Norte, Zona Centro, Durango 34000, México)

  • Ignacio R. Martín-Domínguez

    (Advanced Materials Research Center (CIMAV-Durango), Victoria 147 Norte, Zona Centro, Durango 34000, México)

Abstract

Environmental conditions, such as air temperature and solar radiation, have a complex relationship with the energy requirements for heating and cooling of residential buildings. In this work, a comparative analysis of the insulation methods most commonly applied to low income single-family houses in Mexico is presented, in order to find the most energy-efficient combinations of methods for the various climates in this country. A common kind of building, small houses built with hollow cinder block walls and concrete slab roofs, was analyzed considering three insulation scenarios: walls only, roof only and both. We used dynamic simulation to evaluate energy consumption under the climate conditions found in several Mexican cities. From the energy consumption data and the cost of electricity in Mexico, we calculated net annual energy costs, including both annual energy savings and the annualized cost of the initial investment in better insulation. Results of this analysis show that insulating both roof and walls is most effective in cities with cold winters; insulating just the roof is best for temperate climates; and insulating walls (combined with high-albedo roofs) is most effective for cities with year-long warm weather.

Suggested Citation

  • Jorge Lucero-Álvarez & Norma A. Rodríguez-Muñoz & Ignacio R. Martín-Domínguez, 2016. "The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico," Sustainability, MDPI, vol. 8(7), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:590-:d:72630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chwieduk, Dorota A., 2009. "Recommendation on modelling of solar energy incident on a building envelope," Renewable Energy, Elsevier, vol. 34(3), pages 736-741.
    2. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    3. Sisman, Nuri & Kahya, Emin & Aras, Nil & Aras, Haydar, 2007. "Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions," Energy Policy, Elsevier, vol. 35(10), pages 5151-5155, October.
    4. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    5. Kaska, Önder & Yumrutas, Recep & Arpa, Orhan, 2009. "Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in Turkey," Applied Energy, Elsevier, vol. 86(5), pages 737-747, May.
    6. Akbari, H & Konopacki, S & Pomerantz, M, 1999. "Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States," Energy, Elsevier, vol. 24(5), pages 391-407.
    7. De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Paola Vargas & Leon Hamui, 2021. "Thermal Energy Performance Simulation of a Residential Building Retrofitted with Passive Design Strategies: A Case Study in Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    2. Shouib Mabdeh & Hikmat Ali & Magd Al-Momani, 2022. "Life Cycle Assessment of Energy Retrofit Measures in Existing Healthcare Facility Buildings: The case of Developing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 418-431, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    2. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    3. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    4. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    5. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Fiorentini, Massimo & Tartarini, Federico & Ledo Gomis, Laia & Daly, Daniel & Cooper, Paul, 2019. "Development of an enthalpy-based index to assess climatic potential for ventilative cooling of buildings: An Australian example," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    8. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    9. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    10. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    11. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    12. Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
    13. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    14. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    15. Sofia Pastori & Riccardo Mereu & Enrico Sergio Mazzucchelli & Stefano Passoni & Giovanni Dotelli, 2021. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards," Energies, MDPI, vol. 14(1), pages 1-26, January.
    16. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    17. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    18. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    19. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    20. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:590-:d:72630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.