IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i5p737-747.html
   My bibliography  Save this article

Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in Turkey

Author

Listed:
  • Kaska, Önder
  • Yumrutas, Recep
  • Arpa, Orhan

Abstract

The aim of this study is to find time lag (TL), decrement factor (DF) and total equivalent temperature difference (TETD) values for multilayer walls and flat roofs of buildings using experimental and theoretical methods, and to compare the experimental results with theoretical ones. The TETD is a method for calculating cooling load due to heat gain from the walls or flat roofs, and it can be obtained using values of inside and outside air temperatures, solar radiation, TL and DF. The TL and DF depend on the highest and the lowest temperatures at the inner and outer surfaces of the walls or flat roofs, and the time periods involved in reaching these temperatures. Hence, two testing rooms each consisting of four multilayered walls and a flat roof, air conditioner, measuring elements are built to measure all required temperatures. The required temperatures, which are hourly inside and outside air temperatures, and surface temperatures of each structure layer, are measured in every minute during testing periods of the 2007 summer season of Gaziantep, Turkey. Hourly solar radiation values on the walls are computed using hourly measured solar radiation on a horizontal surface. The TL, DF and TETD values of eight different walls and two different flat roofs commonly used in Turkey are computed utilizing the measured temperature and solar radiation values. The computed values for the TL, DF and TETD are compared with theoretical results obtained numerically using periodic solution of one dimensional transient heat transfer problem for the same structures.

Suggested Citation

  • Kaska, Önder & Yumrutas, Recep & Arpa, Orhan, 2009. "Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in Turkey," Applied Energy, Elsevier, vol. 86(5), pages 737-747, May.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:5:p:737-747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00222-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kontoleon, K.J. & Eumorfopoulou, E.A., 2008. "The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region," Renewable Energy, Elsevier, vol. 33(7), pages 1652-1664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fathipour, Reza & Hadidi, Amin, 2017. "Analytical solution for the study of time lag and decrement factor for building walls in climate of Iran," Energy, Elsevier, vol. 134(C), pages 167-180.
    2. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    3. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    4. Edson Manyumbu & Viktoria Martin & Justin Ningwei Chiu, 2023. "Prospective PCM–Desiccant Combination with Solar-Assisted Regeneration for the Indoor Comfort Control of an Office in a Warm and Humid Climate—A Numerical Study," Energies, MDPI, vol. 16(14), pages 1-14, July.
    5. Cristina Carletti & Cristina Piselli & Fabio Sciurpi, 2024. "Are Design Strategies for High-Performance Buildings Really Effective? Results from One Year of Monitoring of Indoor Microclimate and Envelope Performance of a Newly Built nZEB House in Central Italy," Energies, MDPI, vol. 17(3), pages 1-23, February.
    6. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    7. Jorge Lucero-Álvarez & Norma A. Rodríguez-Muñoz & Ignacio R. Martín-Domínguez, 2016. "The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico," Sustainability, MDPI, vol. 8(7), pages 1-19, June.
    8. Adil Zainal, Omer & Yumrutaş, Recep, 2015. "Validation of periodic solution for computing CLTD (cooling load temperature difference) values for building walls and flat roofs," Energy, Elsevier, vol. 82(C), pages 758-768.
    9. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    10. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).
    11. Zhang, Xueyan & Liu, Xin & Chen, Bin & Zhao, Joe R. & Sang, Yizhou, 2019. "Numerical simulation of heat transfer process of the raised floor heating system integrated with a burning cave," Renewable Energy, Elsevier, vol. 132(C), pages 1104-1111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    2. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    3. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
    4. Paris A. Fokaides & Angeliki Kylili & Ioannis Kyriakides, 2018. "Boundary Conditions Accuracy Effect on the Numerical Simulations of the Thermal Performance of Building Elements," Energies, MDPI, vol. 11(6), pages 1-19, June.
    5. Zingre, Kishor T. & Wan, Man Pun & Wong, Swee Khian & Toh, Winston Boo Thian & Lee, Irene Yen Leng, 2015. "Modelling of cool roof performance for double-skin roofs in tropical climate," Energy, Elsevier, vol. 82(C), pages 813-826.
    6. Kontoleon, K.J. & Theodosiou, Th.G. & Tsikaloudaki, K.G., 2013. "The influence of concrete density and conductivity on walls’ thermal inertia parameters under a variety of masonry and insulation placements," Applied Energy, Elsevier, vol. 112(C), pages 325-337.
    7. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    8. Yeong Huei Lee & Mugahed Amran & Yee Yong Lee & Ahmad Beng Hong Kueh & Siaw Fui Kiew & Roman Fediuk & Nikolai Vatin & Yuriy Vasilev, 2021. "Thermal Behavior and Energy Efficiency of Modified Concretes in the Tropical Climate: A Systemic Review," Sustainability, MDPI, vol. 13(21), pages 1, October.
    9. Ping Wang & Guangcai Gong & Yan Zhou & Bin Qin, 2018. "A Simplified Calculation Method for Building Envelope Cooling Loads in Central South China," Energies, MDPI, vol. 11(7), pages 1-18, July.
    10. Fernando R. Mazarrón & Jaime Cid-Falceto & Ignacio Cañas, 2012. "Ground Thermal Inertia for Energy Efficient Building Design: A Case Study on Food Industry," Energies, MDPI, vol. 5(2), pages 1-16, February.
    11. Mavromatidis, Lazaros Elias & EL Mankibi, Mohamed & Michel, Pierre & Santamouris, Mat, 2012. "Numerical estimation of time lags and decrement factors for wall complexes including Multilayer Thermal Insulation, in two different climatic zones," Applied Energy, Elsevier, vol. 92(C), pages 480-491.
    12. Jihui Yuan, 2018. "Impact of Insulation Type and Thickness on the Dynamic Thermal Characteristics of an External Wall Structure," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    13. Fathipour, Reza & Hadidi, Amin, 2017. "Analytical solution for the study of time lag and decrement factor for building walls in climate of Iran," Energy, Elsevier, vol. 134(C), pages 167-180.
    14. Filippín, C. & Flores Larsen, S., 2009. "Analysis of energy consumption patterns in multi-family housing in a moderate cold climate," Energy Policy, Elsevier, vol. 37(9), pages 3489-3501, September.
    15. Goopyo Hong & Suk-Won Lee & Ji-Yeon Kang & Hyung-Geun Kim, 2019. "Thermal Behavior and Measures to Prevent Condensation of a Newly Developed External Wall Panel," Sustainability, MDPI, vol. 11(3), pages 1-14, February.
    16. Kontoleon, K.J. & Giarma, C., 2016. "Dynamic thermal response of building material layers in aspect of their moisture content," Applied Energy, Elsevier, vol. 170(C), pages 76-91.
    17. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    18. Corrado, Vincenzo & Paduos, Simona, 2016. "New equivalent parameters for thermal characterization of opaque building envelope components under dynamic conditions," Applied Energy, Elsevier, vol. 163(C), pages 313-322.
    19. Zingre, Kishor T. & Wan, Man Pun & Tong, Shanshan & Li, Hua & Chang, Victor W.-C. & Wong, Swee Khian & Thian Toh, Winston Boo & Leng Lee, Irene Yen, 2015. "Modeling of cool roof heat transfer in tropical climate," Renewable Energy, Elsevier, vol. 75(C), pages 210-223.
    20. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:5:p:737-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.