IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i2p1280-1291d45131.html
   My bibliography  Save this article

The Textile Industry and Sustainable Development: A Holt–Winters Forecasting Investigation for the Eastern European Area

Author

Listed:
  • Dorel Paraschiv

    (International Business and Economics Department, Bucharest University of Economic Studies, Bucharest 010374, Romania)

  • Cristiana Tudor

    (International Business and Economics Department, Bucharest University of Economic Studies, Bucharest 010374, Romania)

  • Radu Petrariu

    (International Business and Economics Department, Bucharest University of Economic Studies, Bucharest 010374, Romania)

Abstract

To achieve sustainable development, massive changes towards fostering a clean and pollution-reducing industrial sector are quintessential. The textile industry has been one of the main contributors to water pollution all over the world, causing more than 20% of the registered levels of water pollution in countries like Turkey, Indonesia and China (among the G20 group of countries) and also in Romania and Bulgaria (in the Eastern European area), with even more than 44% in Macedonia. Given the controversy created by the textile industry’s contribution to pollution at a global level and also the need to diminish pollution in order to promote sustainable development, this paper comparatively investigates the contribution of the textile industry to the water pollution across Central and Eastern European countries, as well as developed countries. In addition, we employ the Holt–Winters model to forecast the trend of the total emissions of organic water pollutants, as well as of the textile industry’s contribution to pollution for the top polluters in Eastern Europe, i.e ., Poland and Romania. According to our estimates, both countries are headed towards complete elimination of pollution caused by the textile industry and, hence, toward a more sustainable industrial sector, as Greenpeace intended with the release of its 2011 reports.

Suggested Citation

  • Dorel Paraschiv & Cristiana Tudor & Radu Petrariu, 2015. "The Textile Industry and Sustainable Development: A Holt–Winters Forecasting Investigation for the Eastern European Area," Sustainability, MDPI, vol. 7(2), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:2:p:1280-1291:d:45131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/2/1280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/2/1280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sujit K. Sahu & Kanti V. Mardia, 2005. "A Bayesian kriged Kalman model for short‐term forecasting of air pollution levels," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 223-244, January.
    2. Singh, Kunwar P. & Basant, Ankita & Malik, Amrita & Jain, Gunja, 2009. "Artificial neural network modeling of the river water quality—A case study," Ecological Modelling, Elsevier, vol. 220(6), pages 888-895.
    3. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baogui Xin & Zhiheng Wu, 2015. "Neimark–Sacker Bifurcation Analysis and 0–1 Chaos Test of an Interactions Model between Industrial Production and Environmental Quality in a Closed Area," Sustainability, MDPI, vol. 7(8), pages 1-19, July.
    2. Cristiana Tudor, 2016. "Predicting the Evolution of CO 2 Emissions in Bahrain with Automated Forecasting Methods," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
    3. Salimeh Malekpour Heydari & Teh Noranis Mohd Aris & Razali Yaakob & Hazlina Hamdan, 2021. "Data-Driven Forecasting and Modeling of Runoff Flow to Reduce Flood Risk Using a Novel Hybrid Wavelet-Neural Network Based on Feature Extraction," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    4. Ye Duan & Hailin Mu & Nan Li, 2016. "Analysis of the Relationship between China’s IPPU CO 2 Emissions and the Industrial Economic Growth," Sustainability, MDPI, vol. 8(5), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    2. Sayiter Yıldız & Can Bülent Karakuş, 2020. "Estimation of irrigation water quality index with development of an optimum model: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4771-4786, June.
    3. Steven D. Silver & Marko Raseta, 2021. "An ARFIMA multi-level model of dual-component expectations in repeated cross-sectional survey data," Empirical Economics, Springer, vol. 60(2), pages 683-699, February.
    4. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    5. Alexander Kreuzer & Luciana Dalla Valle & Claudia Czado, 2022. "A Bayesian non‐linear state space copula model for air pollution in Beijing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 613-638, June.
    6. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    7. Kichul Jung & Deg-Hyo Bae & Myoung-Jin Um & Siyeon Kim & Seol Jeon & Daeryong Park, 2020. "Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    8. H. Kent Baker & Satish Kumar & Debidutta Pattnaik, 2021. "Research constituents, intellectual structure, and collaboration pattern in the Journal of Forecasting: A bibliometric analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 577-602, July.
    9. Ranković, Vesna & Radulović, Jasna & Radojević, Ivana & Ostojić, Aleksandar & Čomić, Ljiljana, 2010. "Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia," Ecological Modelling, Elsevier, vol. 221(8), pages 1239-1244.
    10. Lotte Hezewijk & Nico P. Dellaert & Willem L. Jaarsveld, 2025. "On non-negative auto-correlated integer demand processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 101(2), pages 135-161, April.
    11. Dicembrino, Claudio & Trovato, Giovanni, 2013. "Structural Breaks, Price and Income Elasticity, and Forecast of the Monthly Italian Electricity Demand," MPRA Paper 47653, University Library of Munich, Germany.
    12. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    13. Junguo, Hu & Guomo, Zhou & Xiaojun, Xu, 2013. "Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data," Ecological Modelling, Elsevier, vol. 266(C), pages 86-96.
    14. Gambacciani, Marco & Paolella, Marc S., 2017. "Robust normal mixtures for financial portfolio allocation," Econometrics and Statistics, Elsevier, vol. 3(C), pages 91-111.
    15. Sotirios Bersimis & Stavros Degiannakis & Dimitrios Georgakellos, 2017. "Real-time monitoring of carbon monoxide using value-at-risk measure and control charting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 89-108, January.
    16. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    17. Islam, Md. Zahidul & Lin, Yuzhang & Vokkarane, Vinod M. & Yu, Nanpeng, 2023. "Robust learning-based real-time load estimation using sparsely deployed smart meters with high reporting rates," Applied Energy, Elsevier, vol. 352(C).
    18. K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
    19. Jonas Wallin & David Bolin, 2015. "Geostatistical Modelling Using Non-Gaussian Matérn Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 872-890, September.
    20. Shanshan Wang & Joe Wiart, 2020. "Sensor-Aided EMF Exposure Assessments in an Urban Environment Using Artificial Neural Networks," IJERPH, MDPI, vol. 17(9), pages 1-15, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:2:p:1280-1291:d:45131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.