IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i1p400-d305064.html
   My bibliography  Save this article

Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation

Author

Listed:
  • Kichul Jung

    (Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Korea)

  • Deg-Hyo Bae

    (Department of Civil and Environmental Engineering, Sejong University, Seoul 05006, Korea)

  • Myoung-Jin Um

    (Department of Civil Engineering, Kyonggi University, Suwon 16227, Korea)

  • Siyeon Kim

    (Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Korea)

  • Seol Jeon

    (Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Korea)

  • Daeryong Park

    (Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Korea)

Abstract

The present work aimed to examine the feasibility of using artificial neural network (ANN) based models to obtain accurate estimates of nitrate loads in river basins, which is an important parameter for water quality management. Both Single ANN (SANN) and Ensemble ANN (EANN) models were used to obtain the load estimations for five river basins in the Midwest United States. These basins included the Cuyahoga, Raisin, Sandusky, Muskingum, and Vermilion basins in Michigan and Ohio. Further, canonical correlation analysis (CCA) was applied to the ANN models to improve the performance. The k-fold cross-validation method was then utilized to evaluate the proposed models based on two statistical indices, namely, the rRMSE and rBAIS , and the estimates were compared for four different k values (k = 3, 5, 7, and 10). According to the results, the EANN model seemed to produce better load estimations than the SANN model, and the CCA based EANN model tended to produce the best estimates among all of the proposed models in this study. The box plot data for the rRMSE index were also investigated, and the plot results indicated that increasing values of k tended to generate better estimates. Thus, the use of k = 10 is recommended for load estimations since this value was associated with better performances and less biased estimates.

Suggested Citation

  • Kichul Jung & Deg-Hyo Bae & Myoung-Jin Um & Siyeon Kim & Seol Jeon & Daeryong Park, 2020. "Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:400-:d:305064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed El-Shafie & Ali Najah & Humod Alsulami & Heerbod Jahanbani, 2014. "Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 947-967, March.
    2. Singh, Kunwar P. & Basant, Ankita & Malik, Amrita & Jain, Gunja, 2009. "Artificial neural network modeling of the river water quality—A case study," Ecological Modelling, Elsevier, vol. 220(6), pages 888-895.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kichul Jung & Myoung-Jin Um & Momcilo Markus & Daeryong Park, 2020. "Comparison of Long Short-Term Memory and Weighted Regressions on Time, Discharge, and Season Models for Nitrate-N Load Estimation," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    2. Kichul Jung & Daeryong Park & Sangki Park, 2020. "Development of Models for Prompt Responses from Natural Disasters," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    3. Daeryong Park & Myoung-Jin Um & Momcilo Markus & Kichul Jung & Laura Keefer & Siddhartha Verma, 2021. "Insights from an Evaluation of Nitrate Load Estimation Methods in the Midwestern United States," Sustainability, MDPI, vol. 13(13), pages 1-23, July.
    4. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Seyam & Faridah Othman & Ahmed El-Shafie, 2017. "RBFNN Versus Empirical Models for Lag Time Prediction in Tropical Humid Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 187-204, January.
    2. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    3. Sayiter Yıldız & Can Bülent Karakuş, 2020. "Estimation of irrigation water quality index with development of an optimum model: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4771-4786, June.
    4. Mehmet Kayakuş, 2020. "The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 227-236, December.
    5. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    6. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    7. Mohammad Valipour, 2014. "Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4237-4255, September.
    8. Yumin Wang & Weijian Ran & Lei Wu & Yifeng Wu, 2019. "Assessment of River Water Quality Based on an Improved Fuzzy Matter-Element Model," IJERPH, MDPI, vol. 16(15), pages 1-11, August.
    9. Gebdang B. Ruben & Ke Zhang & Hongjun Bao & Xirong Ma, 2018. "Application and Sensitivity Analysis of Artificial Neural Network for Prediction of Chemical Oxygen Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 273-283, January.
    10. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    11. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    12. Thendiyath Roshni & Madan K. Jha & Ravinesh C. Deo & A. Vandana, 2019. "Development and Evaluation of Hybrid Artificial Neural Network Architectures for Modeling Spatio-Temporal Groundwater Fluctuations in a Complex Aquifer System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2381-2397, May.
    13. Bhattacharjee, Natalia V. & Tollner, Ernest W., 2016. "Improving management of windrow composting systems by modeling runoff water quality dynamics using recurrent neural network," Ecological Modelling, Elsevier, vol. 339(C), pages 68-76.
    14. Vinay Kumar Gautam & Chaitanya B. Pande & Kanak N. Moharir & Abhay M. Varade & Nitin Liladhar Rane & Johnbosco C. Egbueri & Fahad Alshehri, 2023. "Prediction of Sodium Hazard of Irrigation Purpose using Artificial Neural Network Modelling," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    15. Ranković, Vesna & Radulović, Jasna & Radojević, Ivana & Ostojić, Aleksandar & Čomić, Ljiljana, 2010. "Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia," Ecological Modelling, Elsevier, vol. 221(8), pages 1239-1244.
    16. Linlin Zhao & Jasper Mbachu & Zhansheng Liu, 2019. "Exploring the Trend of New Zealand Housing Prices to Support Sustainable Development," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    17. Junguo, Hu & Guomo, Zhou & Xiaojun, Xu, 2013. "Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data," Ecological Modelling, Elsevier, vol. 266(C), pages 86-96.
    18. Valipour, Mohammad & Gholami Sefidkouhi, Mohammad Ali & Raeini−Sarjaz, Mahmoud, 2017. "Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events," Agricultural Water Management, Elsevier, vol. 180(PA), pages 50-60.
    19. Minhao Zhang & Zhiyu Zhang & Xuan Wang & Zhenliang Liao & Lijin Wang, 2024. "The Use of Attention-Enhanced CNN-LSTM Models for Multi-Indicator and Time-Series Predictions of Surface Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6103-6119, December.
    20. Shanshan Wang & Joe Wiart, 2020. "Sensor-Aided EMF Exposure Assessments in an Urban Environment Using Artificial Neural Networks," IJERPH, MDPI, vol. 17(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:400-:d:305064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.