Data-Driven Dam Outflow Prediction Using Deep Learning with Simultaneous Selection of Input Predictors and Hyperparameters Using the Bayesian Optimization Algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-023-03677-9
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
- Khabat Khosravi & Ali Golkarian & John P. Tiefenbacher, 2022. "Using Optimized Deep Learning to Predict Daily Streamflow: A Comparison to Common Machine Learning Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 699-716, January.
- Trung Duc Tran & Vinh Ngoc Tran & Jongho Kim, 2021. "Improving the Accuracy of Dam Inflow Predictions Using a Long Short-Term Memory Network Coupled with Wavelet Transform and Predictor Selection," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
- Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
- S. Mohan & N. Ramsundram, 2016. "Predictive Temporal Data-Mining Approach for Evolving Knowledge Based Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3315-3330, August.
- Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "Streamflow Prediction Utilizing Deep Learning and Machine Learning Algorithms for Sustainable Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3227-3241, June.
- Omid Bozorg-Haddad & Mahboubeh Zarezadeh-Mehrizi & Mehri Abdi-Dehkordi & Hugo A. Loáiciga & Miguel A. Mariño, 2016. "A self-tuning ANN model for simulation and forecasting of surface flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2907-2929, July.
- Kichul Jung & Deg-Hyo Bae & Myoung-Jin Um & Siyeon Kim & Seol Jeon & Daeryong Park, 2020. "Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vinh Ngoc Tran & Hanh Duc Nguyen & Hai Khuong & Huy Ba Dao & Quan Huu Minh Le & Chi Que Nguyen & Giang Tien Nguyen, 2025. "Reconstructing Long-Term Daily Streamflow Data at the Discontinuous Monitoring Station in the Ungauged Transboundary Basin Using Machine Learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(7), pages 3327-3348, May.
- Maelaynayn El baida & Farid Boushaba & Mimoun Chourak & Mohamed Hosni, 2024. "Real-Time Urban Flood Depth Mapping: Convolutional Neural Networks for Pluvial and Fluvial Flood Emulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4763-4782, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bibhuti Bhusan Sahoo & Sovan Sankalp & Ozgur Kisi, 2023. "A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4271-4292, September.
- Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
- Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
- Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
- Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
- Mustafa Sahin Dogan & Josue Medellin-Azuara & Jay R. Lund, 2024. "Hydropower Reservoir Optimization with Solar Generation-Changed Energy Prices in California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 2135-2153, April.
- Xiao Liu & Xu Lai & Jin Zou, 2017. "A New MCP Method of Wind Speed Temporal Interpolation and Extrapolation Considering Wind Speed Mixed Uncertainty," Energies, MDPI, vol. 10(8), pages 1-21, August.
- Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
- Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
- Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
- Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2018. "A Novel and Alternative Approach for Direct and Indirect Wind-Power Prediction Methods," Energies, MDPI, vol. 11(11), pages 1-19, October.
- Chong, W.T. & Gwani, M. & Shamshirband, S. & Muzammil, W.K. & Tan, C.J. & Fazlizan, A. & Poh, S.C. & Petković, Dalibor & Wong, K.H., 2016. "Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine," Energy, Elsevier, vol. 102(C), pages 630-636.
- Saeid Akbarifard & Mohammad Zounemat-Kermani, 2024. "New Hybrid Optimization Approaches for the Optimal Management of Surface Water Resources Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6007-6023, December.
- Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
- Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
- Tang, Zhenhao & Zhao, Gengnan & Ouyang, Tinghui, 2021. "Two-phase deep learning model for short-term wind direction forecasting," Renewable Energy, Elsevier, vol. 173(C), pages 1005-1016.
- Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
- Salcedo-Sanz, Sancho & Ángel M. Pérez-Bellido, & Ortiz-García, Emilio G. & Portilla-Figueras, Antonio & Prieto, Luis & Paredes, Daniel, 2009. "Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction," Renewable Energy, Elsevier, vol. 34(6), pages 1451-1457.
- Kichul Jung & Myoung-Jin Um & Momcilo Markus & Daeryong Park, 2020. "Comparison of Long Short-Term Memory and Weighted Regressions on Time, Discharge, and Season Models for Nitrate-N Load Estimation," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
- Kichul Jung & Daeryong Park & Sangki Park, 2020. "Development of Models for Prompt Responses from Natural Disasters," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:2:d:10.1007_s11269-023-03677-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i2d10.1007_s11269-023-03677-9.html