IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i5p1379-1394.html
   My bibliography  Save this article

Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava

Author

Listed:
  • Marijana Hadzima-Nyarko
  • Anamarija Rabi
  • Marija Šperac

Abstract

Water temperature directly affects the physical, biological and chemical characteristics of the river and determines the fitness and life of all aquatic organisms. It has direct and indirect effects on nearly all aspects of stream ecology. Accurately estimating water temperature is a complex problem. The purpose of this article is to analyze the relationship between the air and water temperature of the River Drava by constructing an artificial neural network (ANN) model and choosing appropriate network architectures for the River Drava’s daily river water temperature as well as demonstrating its application in improving the interpretation of the results. A linear regression model, as well as a stochastic model are also constructed and compared to ANN models consisting of a multilayer perceptron neural network and a radial basis function network. The results indicate that the ANN models are much better models and that ANNs are powerful tools that can be used for the estimation of daily mean river temperature. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:5:p:1379-1394
    DOI: 10.1007/s11269-014-0557-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0557-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0557-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed El-Shafie & Ali Najah & Humod Alsulami & Heerbod Jahanbani, 2014. "Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 947-967, March.
    2. Kostas Moustris & Ioanna Larissi & Panagiotis Nastos & Athanasios Paliatsos, 2011. "Precipitation Forecast Using Artificial Neural Networks in Specific Regions of Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1979-1993, June.
    3. Yu Chen & Liang Chang & Chun Huang & Hone Chu, 2013. "Applying Genetic Algorithm and Neural Network to the Conjunctive Use of Surface and Subsurface Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4731-4757, November.
    4. Taymoor Awchi, 2014. "River Discharges Forecasting In Northern Iraq Using Different ANN Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 801-814, February.
    5. Hossein Kakahaji & Hamed Banadaki & Abbas Kakahaji & Abdulamir Kakahaji, 2013. "Prediction of Urmia Lake Water-Level Fluctuations by Using Analytical, Linear Statistic and Intelligent Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4469-4492, October.
    6. Ali Rahimikhoob, 2014. "Comparison between M5 Model Tree and Neural Networks for Estimating Reference Evapotranspiration in an Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 657-669, February.
    7. Krishna Singh & Mahesh Pal & V. Singh, 2010. "Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2007-2019, August.
    8. C. Iglesias & J. Martínez Torres & P. García Nieto & J. Alonso Fernández & C. Díaz Muñiz & J. Piñeiro & J. Taboada, 2014. "Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 319-331, January.
    9. Avinash Agarwal & R. Singh, 2004. "Runoff Modelling Through Back Propagation Artificial Neural Network With Variable Rainfall-Runoff Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 285-300, June.
    10. A. Bhadra & A. Bandyopadhyay & R. Singh & N. Raghuwanshi, 2010. "Rainfall-Runoff Modeling: Comparison of Two Approaches with Different Data Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 37-62, January.
    11. R. Gopakumar & Kaoru Takara & E. James, 2007. "Hydrologic Data Exploration and River Flow Forecasting of a Humid Tropical River Basin Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1915-1940, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Yao & Zhenghua Gu & Yun Li & Hao Ding & Tinghui Wang, 2022. "Intelligent Simulation of Water Temperature Stratification in the Reservoir," IJERPH, MDPI, vol. 19(20), pages 1-13, October.
    2. Adam P. Piotrowski & Maciej J. Napiorkowski & Monika Kalinowska & Jaroslaw J. Napiorkowski & Marzena Osuch, 2016. "Are Evolutionary Algorithms Effective in Calibrating Different Artificial Neural Network Types for Streamwater Temperature Prediction?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1217-1237, February.
    3. Bahaa Khali & Jan Adamowski, 2014. "Evaluation of the Performance of Eight Record-Extension Techniques Under Different Levels of Association, Presence of Outliers and Different Sizes of Concurrent Records: A Monte Carlo Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5139-5155, November.
    4. Gang Zhou & Manyi Cui & Junhong Wan & Shiqiang Zhang, 2021. "A Review on Snowmelt Models: Progress and Prospect," Sustainability, MDPI, vol. 13(20), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebdang B. Ruben & Ke Zhang & Hongjun Bao & Xirong Ma, 2018. "Application and Sensitivity Analysis of Artificial Neural Network for Prediction of Chemical Oxygen Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 273-283, January.
    2. Rana Muhammad Adnan & Xiaohui Yuan & Ozgur Kisi & Muhammad Adnan & Asif Mehmood, 2018. "Stream Flow Forecasting of Poorly Gauged Mountainous Watershed by Least Square Support Vector Machine, Fuzzy Genetic Algorithm and M5 Model Tree Using Climatic Data from Nearby Station," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4469-4486, November.
    3. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    4. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    5. Xiaohu Wen & Jianhua Si & Zhibin He & Jun Wu & Hongbo Shao & Haijiao Yu, 2015. "Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3195-3209, July.
    6. Ozgur Kisi & Alireza Nia & Mohsen Gosheh & Mohammad Tajabadi & Azadeh Ahmadi, 2012. "Intermittent Streamflow Forecasting by Using Several Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 457-474, January.
    7. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    8. Mohammed Seyam & Faridah Othman & Ahmed El-Shafie, 2017. "RBFNN Versus Empirical Models for Lag Time Prediction in Tropical Humid Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 187-204, January.
    9. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    10. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    11. Naser Dehghanian & S. Saeid Mousavi Nadoushani & Bahram Saghafian & Ruhangiz Akhtari, 2019. "Performance Evaluation of a Fuzzy Hybrid Clustering Technique to Identify Flood Source Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4621-4636, October.
    12. Ali Suliman & Milad Jajarmizadeh & Sobri Harun & Intan Mat Darus, 2015. "Comparison of Semi-Distributed, GIS-Based Hydrological Models for the Prediction of Streamflow in a Large Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3095-3110, July.
    13. Mustafa Turan & Mehmet Yurdusev, 2014. "Predicting Monthly River Flows by Genetic Fuzzy Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4685-4697, October.
    14. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    15. R Maheswaran & Rakesh Khosa, 2014. "A Wavelet-Based Second Order Nonlinear Model for Forecasting Monthly Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5411-5431, December.
    16. Manish Goyal & C. Ojha, 2011. "Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2177-2195, July.
    17. Hye Lee & Eun Kim & Seok Park & Jung Choi, 2015. "Effects of Climate Change on the Movement of Turbidity Flow in a Stratified Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4095-4110, September.
    18. Anas Mahmood Al-Juboori, 2021. "A Hybrid Model to Predict Monthly Streamflow Using Neighboring Rivers Annual Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 729-743, January.
    19. Anas Mahmood Al-Juboori, 2019. "Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3257-3270, July.
    20. Ervin Shan Khai Tiu & Yuk Feng Huang & Jing Lin Ng & Nouar AlDahoul & Ali Najah Ahmed & Ahmed Elshafie, 2022. "An evaluation of various data pre-processing techniques with machine learning models for water level prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 121-153, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:5:p:1379-1394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.