IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i15p2793-d254872.html
   My bibliography  Save this article

Assessment of River Water Quality Based on an Improved Fuzzy Matter-Element Model

Author

Listed:
  • Yumin Wang

    (School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Weijian Ran

    (School of Glasgow, University of Electronic Science and Technology, Chengdu 610054, China)

  • Lei Wu

    (School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Yifeng Wu

    (School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract

In this paper, an improved fuzzy matter-element (IFME) method was proposed, which integrates the classical matter-element (ME) method, set pair analysis (SPA), and variable coefficient method (VCM). The method was applied to evaluate water quality of five monitor stations along Caoqiao River in Yixing city, Jiangsu Province, China. The levels of river water quality were determined according to fuzzy closeness degree. Compared with the traditional evaluation methods, the IFME method has several characteristics as follows: (i) weights were determined by the VCM method, which can reduce workload and overcome the adverse effects of abnormal values, (ii) membership degrees were defined by SPA, which can utilize monitored data more scientifically and comprehensively, and (iii) IFME is more suitable for seriously polluted rivers. Overall, these findings reinforce the notion that an integrated approach is essential for attaining scientific and objective assessment of river water quality.

Suggested Citation

  • Yumin Wang & Weijian Ran & Lei Wu & Yifeng Wu, 2019. "Assessment of River Water Quality Based on an Improved Fuzzy Matter-Element Model," IJERPH, MDPI, vol. 16(15), pages 1-11, August.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2793-:d:254872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/15/2793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/15/2793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Kunwar P. & Basant, Ankita & Malik, Amrita & Jain, Gunja, 2009. "Artificial neural network modeling of the river water quality—A case study," Ecological Modelling, Elsevier, vol. 220(6), pages 888-895.
    2. Mohamad Fulazzaky, 2009. "Water Quality Evaluation System to Assess the Brantas River Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3019-3033, November.
    3. Yumin Wang & Weijian Ran, 2019. "Comprehensive Eutrophication Assessment Based on Fuzzy Matter Element Model and Monte Carlo-Triangular Fuzzy Numbers Approach," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Zhan & Mingjing Guo & Jinhua Cheng & Hongxia Peng, 2022. "Evaluation of Resources and Environment Carrying Capacity Based on Support Pressure Coupling Mechanism: A Case Study of the Yangtze River Economic Belt," IJERPH, MDPI, vol. 20(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yumin Wang & Xian’e Zhang & Yifeng Wu, 2020. "Eutrophication Assessment Based on the Cloud Matter Element Model," IJERPH, MDPI, vol. 17(1), pages 1-19, January.
    2. Sayiter Yıldız & Can Bülent Karakuş, 2020. "Estimation of irrigation water quality index with development of an optimum model: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4771-4786, June.
    3. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    4. Kichul Jung & Deg-Hyo Bae & Myoung-Jin Um & Siyeon Kim & Seol Jeon & Daeryong Park, 2020. "Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    5. Roestamy, Martin & Martin, Abraham Yazdi & Rusli, Radif Khotamir & Fulazzaky, Mohamad Ali, 2022. "A review of the reliability of land bank institution in Indonesia for effective land management of public interest," Land Use Policy, Elsevier, vol. 120(C).
    6. Yi Tang & Yang Pan & Lei Zhang & Hongchen Yi & Yiping Gu & Weihao Sun, 2023. "Efficient Monitoring of Total Suspended Matter in Urban Water Based on UAV Multi-spectral Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2143-2160, March.
    7. Ranković, Vesna & Radulović, Jasna & Radojević, Ivana & Ostojić, Aleksandar & Čomić, Ljiljana, 2010. "Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia," Ecological Modelling, Elsevier, vol. 221(8), pages 1239-1244.
    8. Junguo, Hu & Guomo, Zhou & Xiaojun, Xu, 2013. "Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data," Ecological Modelling, Elsevier, vol. 266(C), pages 86-96.
    9. Lili Li & Jianhui Wei, 2024. "Evaluation of Tree-Based Voting Algorithms in Water Quality Classification Prediction," Sustainability, MDPI, vol. 16(23), pages 1-25, December.
    10. Shanshan Wang & Joe Wiart, 2020. "Sensor-Aided EMF Exposure Assessments in an Urban Environment Using Artificial Neural Networks," IJERPH, MDPI, vol. 17(9), pages 1-15, April.
    11. Ran Li & Yanqiang Gao & Yihong Guan & Mou Lv & Hang Li, 2025. "Optimization and Reliability Analysis of the Combined Application of Multiple Air Tanks Under Extreme Accident Conditions Based on the Multi-Objective Whale Optimization Algorithm," Sustainability, MDPI, vol. 17(5), pages 1-23, March.
    12. West, David & Dellana, Scott, 2011. "An empirical analysis of neural network memory structures for basin water quality forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 777-803, July.
    13. Martin Roestamy & Mohamad Ali Fulazzaky, 2022. "A review of the water resources management for the Brantas River basin: challenges in the transition to an integrated water resources management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11514-11529, October.
    14. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    15. Tanujit Chakraborty & Ashis Kumar Chakraborty & Zubia Mansoor, 2019. "A hybrid regression model for water quality prediction," OPSEARCH, Springer;Operational Research Society of India, vol. 56(4), pages 1167-1178, December.
    16. Tat Pham Van & Pham Nu Ngoc Han & Minh Phap Dao, 2017. "Modelling of Dissolved Oxygen in Thi Vai River Water Incorporating Artificial Neural Network and Multivariable Regression," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 7(1), pages 11-18, November.
    17. Deborah Panepinto & Giuseppe Genon, 2010. "Modeling of Po River Water Quality in Torino (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2937-2958, September.
    18. Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
    19. Margaret W. Gitau & Jingqiu Chen & Zhao Ma, 2016. "Water Quality Indices as Tools for Decision Making and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2591-2610, June.
    20. Pavitra Kumar & Sai Hin Lai & Jee Khai Wong & Nuruol Syuhadaa Mohd & Md Rowshon Kamal & Haitham Abdulmohsin Afan & Ali Najah Ahmed & Mohsen Sherif & Ahmed Sefelnasr & Ahmed El-Shafie, 2020. "Review of Nitrogen Compounds Prediction in Water Bodies Using Artificial Neural Networks and Other Models," Sustainability, MDPI, vol. 12(11), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2793-:d:254872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.