IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p2901-d1619827.html
   My bibliography  Save this article

PV Energy Communities in Residential Apartments: Technical Capacities and Economic Viability

Author

Listed:
  • Anna Mutule

    (Institute of Physical Energetics, Smart Grid Research Centre, 14 Dzerbenes Str., LV-1006 Riga, Latvia)

  • Olegs Borscevskis

    (Institute of Physical Energetics, Smart Grid Research Centre, 14 Dzerbenes Str., LV-1006 Riga, Latvia)

  • Victor Astapov

    (Institute of Physical Energetics, Smart Grid Research Centre, 14 Dzerbenes Str., LV-1006 Riga, Latvia)

  • Irina Antoskova

    (Institute of Physical Energetics, Smart Grid Research Centre, 14 Dzerbenes Str., LV-1006 Riga, Latvia)

  • Paula Carroll

    (School of Business, University College Dublin, D04 V1W8 Dublin, Ireland)

  • Evita Kairisa

    (Institute of Physical Energetics, Smart Grid Research Centre, 14 Dzerbenes Str., LV-1006 Riga, Latvia)

Abstract

The Baltic countries are exploring diverse ways to achieve renewable energy objectives, with a particular emphasis on utilizing photovoltaic (PV) technologies in urban areas. Despite the northerly geographical location, PV energy has proven effective, particularly in individual households under the net metering scheme. Energy communities (EC) in urban areas have the potential to support sustainable energy transition by promoting local generation and increasing resilience. However, the broader adoption of rooftop PV systems faces numerous challenges, including technical limitations and legislative gaps. This study examines challenges encountered by community energy projects in residential apartments through a case study in the Latvian context. The paper provides a comparative analysis of PV community implementation scenarios across the three types of typical apartment buildings. The study demonstrates a number of fundamental obstacles that hamper the development of ECs in apartment buildings. The results indicate that the economic benefits of ECs largely depend on electricity market price, and that selection of optimal community design is the key aspect for minimizing investment risks amid market and legislative uncertainty. Results indicate that individual households may have limited motivation to form ECs under current policies. Finally, the insights provided help shape suggestions for future research.

Suggested Citation

  • Anna Mutule & Olegs Borscevskis & Victor Astapov & Irina Antoskova & Paula Carroll & Evita Kairisa, 2025. "PV Energy Communities in Residential Apartments: Technical Capacities and Economic Viability," Sustainability, MDPI, vol. 17(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:2901-:d:1619827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/2901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/2901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahdan, Parisa & Zeyen, Elisabeth & Gallego-Castillo, Cristobal & Victoria, Marta, 2024. "Distributed photovoltaics provides key benefits for a highly renewable European energy system," Applied Energy, Elsevier, vol. 360(C).
    2. Maksym Koltunov & Simon Pezzutto & Adriano Bisello & Georg Lettner & Albert Hiesl & Wilfried van Sark & Atse Louwen & Eric Wilczynski, 2023. "Mapping of Energy Communities in Europe: Status Quo and Review of Existing Classifications," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    3. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    4. Weckesser, Tilman & Dominković, Dominik Franjo & Blomgren, Emma M.V. & Schledorn, Amos & Madsen, Henrik, 2021. "Renewable Energy Communities: Optimal sizing and distribution grid impact of photo-voltaics and battery storage," Applied Energy, Elsevier, vol. 301(C).
    5. Elena Tarpani & Cristina Piselli & Claudia Fabiani & Ilaria Pigliautile & Eelke J. Kingma & Benedetta Pioppi & Anna Laura Pisello, 2022. "Energy Communities Implementation in the European Union: Case Studies from Pioneer and Laggard Countries," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    6. Luisa Losada-Puente & José Antonio Blanco & Adina Dumitru & Ioannis Sebos & Aggelos Tsakanikas & Ioanna Liosi & Stelios Psomas & Mariangela Merrone & Diego Quiñoy & Eduardo Rodríguez, 2023. "Cross-Case Analysis of the Energy Communities in Spain, Italy, and Greece: Progress, Barriers, and the Road Ahead," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    7. Inês, Campos & Guilherme, Pontes Luz & Esther, Marín-González & Swantje, Gährs & Stephen, Hall & Lars, Holstenkamp, 2020. "Regulatory challenges and opportunities for collective renewable energy prosumers in the EU," Energy Policy, Elsevier, vol. 138(C).
    8. Roberts, Mike B. & Sharma, Arijit & MacGill, Iain, 2022. "Efficient, effective and fair allocation of costs and benefits in residential energy communities deploying shared photovoltaics," Applied Energy, Elsevier, vol. 305(C).
    9. Minuto, Francesco Demetrio & Lanzini, Andrea, 2022. "Energy-sharing mechanisms for energy community members under different asset ownership schemes and user demand profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Nuñez-Jimenez, Alejandro & Mehta, Prakhar & Griego, Danielle, 2023. "Let it grow: How community solar policy can increase PV adoption in cities," Energy Policy, Elsevier, vol. 175(C).
    11. Abada, Ibrahim & Ehrenmann, Andreas & Lambin, Xavier, 2020. "Unintended consequences: The snowball effect of energy communities," Energy Policy, Elsevier, vol. 143(C).
    12. Gjorgievski, Vladimir Z. & Velkovski, Bodan & Francesco Demetrio, Minuto & Cundeva, Snezana & Markovska, Natasa, 2023. "Energy sharing in European renewable energy communities: Impact of regulated charges," Energy, Elsevier, vol. 281(C).
    13. Mathews, Duncan & Ó Gallachóir, Brian & Deane, Paul, 2023. "Systematic bias in reanalysis-derived solar power profiles & the potential for error propagation in long duration energy storage studies," Applied Energy, Elsevier, vol. 336(C).
    14. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2019. "Profitability of PV sharing in energy communities: Use cases for different settlement patterns," Energy, Elsevier, vol. 189(C).
    15. Eva Llera-Sastresa & José Ángel Gimeno & José Luis Osorio-Tejada & Pilar Portillo-Tarragona, 2023. "Effect of Sharing Schemes on the Collective Energy Self-Consumption Feasibility," Energies, MDPI, vol. 16(18), pages 1-17, September.
    16. Sebi, Carine & Vernay, Anne-Lorène, 2020. "Community renewable energy in France: The state of development and the way forward," Energy Policy, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariuzzo, Ivan & Fina, Bernadette & Stroemer, Stefan & Raugi, Marco, 2024. "Economic assessment of multiple energy community participation," Applied Energy, Elsevier, vol. 353(PA).
    2. Gjorgievski, Vladimir Z. & Velkovski, Bodan & Francesco Demetrio, Minuto & Cundeva, Snezana & Markovska, Natasa, 2023. "Energy sharing in European renewable energy communities: Impact of regulated charges," Energy, Elsevier, vol. 281(C).
    3. Velkovski, Bodan & Gjorgievski, Vladimir Z. & Markovski, Blagoja & Cundeva, Snezana & Markovska, Natasa, 2024. "A framework for shared EV charging in residential renewable energy communities," Renewable Energy, Elsevier, vol. 231(C).
    4. Sara Mohammadi & Frank Eliassen & Hans-Arno Jacobsen, 2023. "Applying Energy Justice Principles to Renewable Energy Trading and Allocation in Multi-Unit Buildings," Energies, MDPI, vol. 16(3), pages 1-25, January.
    5. Felice, Alex & Rakocevic, Lucija & Peeters, Leen & Messagie, Maarten & Coosemans, Thierry & Ramirez Camargo, Luis, 2022. "Renewable energy communities: Do they have a business case in Flanders?," Applied Energy, Elsevier, vol. 322(C).
    6. Berg, Kjersti & Hernandez-Matheus, Alejandro & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Farahmand, Hossein, 2024. "Load configuration impact on energy community and distribution grid: Quantifying costs, emissions and grid exchange," Applied Energy, Elsevier, vol. 363(C).
    7. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Markovska, Natasa & Georghiou, George E., 2022. "Virtual net-billing: A fair energy sharing method for collective self-consumption," Energy, Elsevier, vol. 254(PB).
    8. Vallati, Andrea & Lo Basso, Gianluigi & Muzi, Francesco & Fiorini, Costanza Vittoria & Pastore, Lorenzo Mario & Di Matteo, Miriam, 2024. "Urban energy transition: Sustainable model simulation for social house district," Energy, Elsevier, vol. 308(C).
    9. Berg, Kjersti & Rana, Rubi & Farahmand, Hossein, 2023. "Quantifying the benefits of shared battery in a DSO-energy community cooperation," Applied Energy, Elsevier, vol. 343(C).
    10. Nima Narjabadifam & Javanshir Fouladvand & Mustafa Gül, 2023. "Critical Review on Community-Shared Solar—Advantages, Challenges, and Future Directions," Energies, MDPI, vol. 16(8), pages 1-25, April.
    11. Campos, Inês & Korsnes, Marius & Labanca, Nicola & Bertoldi, Paolo, 2024. "Can renewable energy prosumerism cater for sufficiency and inclusion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    12. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    14. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    15. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    16. Ana Ogando-Martínez & Xela García-Santiago & Saúl Díaz García & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2023. "Optimization of Energy Allocation Strategies in Spanish Collective Self-Consumption Photovoltaic Systems," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    17. Sirviö, Katja & Motta, Sergio & Rauma, Kalle & Evens, Corentin, 2024. "Multi-level functional analysis of developing prosumers and energy communities with value creation framework," Applied Energy, Elsevier, vol. 368(C).
    18. Nuñez-Jimenez, Alejandro & Mehta, Prakhar & Griego, Danielle, 2023. "Let it grow: How community solar policy can increase PV adoption in cities," Energy Policy, Elsevier, vol. 175(C).
    19. Axel Gautier & Julien Jacqmin & Jean-Christophe Poudou, 2023. "The Energy Community and the Grid," Working Papers hal-04032253, HAL.
    20. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:2901-:d:1619827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.