IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5460-d1678396.html
   My bibliography  Save this article

A Study on the Optimization of Photovoltaic Installations on the Facades of Semi-Outdoor Substations

Author

Listed:
  • Xiaohui Wu

    (Power Grid Planning Research Center of Guangdong Power Grid Co., Ltd., Guangzhou 510220, China)

  • Yanfeng Wang

    (Power Grid Planning Research Center of Guangdong Power Grid Co., Ltd., Guangzhou 510220, China)

  • Yufei Tan

    (School of Architecture, South China University of Technology, Guangzhou 510641, China)

  • Ping Su

    (School of Architecture, South China University of Technology, Guangzhou 510641, China
    State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510630, China)

Abstract

This paper explores the optimal configuration strategies for building-integrated photovoltaic (BIPV) systems in response to the low-carbon transformation needs of semi-outdoor substations, aiming to reconcile the contradiction between photovoltaic (PV) power generation efficiency and indoor environmental control in industrial buildings. Taking a 220 kV semi-outdoor substation of the China Southern Power Grid as a case study, a building energy consumption–PV power generation coupling model was established using EnergyPlus software. The impacts of three PV wall constructions and different building orientations on a transformer room and an air-conditioned living space were analyzed. The results show the EPS-filled PV structure offers superior passive thermal performance and cooling energy savings, making it more suitable for substation applications with high thermal loads. Building orientation plays a decisive role in the net energy performance, with an east–west alignment significantly enhancing the PV module’s output and energy efficiency due to better solar exposure. Based on current component costs, electricity prices, and subsidies, the BIPV system demonstrates a moderate annual return, though the relatively long payback period presents a challenge for widespread adoption. East–west orientations offer better returns due to their higher solar exposure. It is recommended to adopt east–west layouts in EPS-filled PV construction to optimize both energy performance and economic performance, while further shortening the payback period through technical and policy support. This study provides an optimized design path for industrial BIPV module integration and aids power infrastructure’s low-carbon shift.

Suggested Citation

  • Xiaohui Wu & Yanfeng Wang & Yufei Tan & Ping Su, 2025. "A Study on the Optimization of Photovoltaic Installations on the Facades of Semi-Outdoor Substations," Sustainability, MDPI, vol. 17(12), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5460-:d:1678396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Mutule & Olegs Borscevskis & Victor Astapov & Irina Antoskova & Paula Carroll & Evita Kairisa, 2025. "PV Energy Communities in Residential Apartments: Technical Capacities and Economic Viability," Sustainability, MDPI, vol. 17(7), pages 1-21, March.
    2. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    3. Yao, Huizong & Zang, Chuanfu, 2021. "The spatiotemporal characteristics of electrical energy supply-demand and the green economy outlook of Guangdong Province, China," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irene Del Hierro López & Nuria Martín-Chivelet & Jesús Polo & Lorenzo Olivieri, 2025. "Renovation of Typological Clusters with Building-Integrated Photovoltaic Systems," Energies, MDPI, vol. 18(6), pages 1-20, March.
    2. Zhang, Tingsheng & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2024. "A portable balloon integrated photovoltaic system deployed at low altitude," Energy, Elsevier, vol. 313(C).
    3. Xinfa Tang & Guozu Hao & Yonghua Wang & Youwei Wan & Jingjing Wang & Yan Luo & Musa Dirane Nubea, 2024. "Synergistic Development Pathways: An Exploratory Study on the Urban–Rural Mutual Assistance Model and Low-Carbon Transformation of Henan’s Power Supply Industry Towards Dual-Carbon Goals," Energies, MDPI, vol. 17(24), pages 1-19, December.
    4. Li, Qingxiang & Yang, Guidong & Bian, Chenhang & Long, Lingege & Wang, Xinyi & Gao, Chuanxiang & Wong, Choi Lam & Huang, Yijun & Zhao, Benyun & Chen, Xi & Chen, Ben M., 2025. "Autonomous design framework for deploying building integrated photovoltaics," Applied Energy, Elsevier, vol. 377(PD).
    5. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    6. Ronghui (Kevin) Zhou & Nick Lee, 2022. "The Reception of Education for Sustainable Development (ESD) in China: A Historical Review," Sustainability, MDPI, vol. 14(7), pages 1-13, April.
    7. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    8. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Shaohang Shi & Ning Zhu, 2023. "Challenges and Optimization of Building-Integrated Photovoltaics (BIPV) Windows: A Review," Sustainability, MDPI, vol. 15(22), pages 1-30, November.
    10. Li, Qingxiang & Long, Lingege & Li, Xinwei & Yang, Guidong & Bian, Chenhang & Zhao, Benyun & Chen, Xi & Chen, Ben M., 2025. "Life cycle cost analysis of circular photovoltaic façade in dense urban environment using 3D modeling," Renewable Energy, Elsevier, vol. 238(C).
    11. Kevin López-Eugenio & Pedro Torres-Bermeo & Carolina Del-Valle-Soto & José Varela-Aldás, 2025. "Projection of Photovoltaic System Adoption and Its Impact on a Distributed Power Grid Using Fuzzy Logic," Sustainability, MDPI, vol. 17(12), pages 1-28, June.
    12. Ding, Liping & Zhu, Yuxuan & Zheng, Longwei & Dai, Qiyao & Zhang, Zumeng, 2023. "What is the path of photovoltaic building (BIPV or BAPV) promotion? --The perspective of evolutionary games," Applied Energy, Elsevier, vol. 340(C).
    13. Xue, Yan & Hu, Dongmei & Irfan, Muhammad & Wu, Haitao & Hao, Yu, 2023. "Natural resources policy making through finance? The role of green finance on energy resources poverty," Resources Policy, Elsevier, vol. 85(PA).
    14. Wang, Bingqing & Li, Yongping & Huang, Guohe & Gao, Pangpang & Liu, Jing & Wen, Yizhuo, 2023. "Development of an integrated BLSVM-MFA method for analyzing renewable power-generation potential under climate change: A case study of Xiamen," Applied Energy, Elsevier, vol. 337(C).
    15. Tang, Xinmeng & Zhou, Xiaoguang, 2023. "Impact of green finance on renewable energy development: A spatiotemporal consistency perspective," Renewable Energy, Elsevier, vol. 204(C), pages 320-337.
    16. Fabrizio M. Amoruso & Thorsten Schuetze, 2023. "Carbon Life Cycle Assessment and Costing of Building Integrated Photovoltaic Systems for Deep Low-Carbon Renovation," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    17. Bu, Subei & Yang, Haotian & Lyu, Yuanli & Qi, Xuejun & Li, Qian & Gao, Rong, 2025. "A novel building integrated photovoltaic/thermal wall for hot water-electrical power co-generation," Renewable Energy, Elsevier, vol. 239(C).
    18. Jo, Ho Hyeon & Kang, Yujin & Yang, Sungwoong & Kim, Young Uk & Yun, Beom Yeol & Chang, Jae D. & Kim, Sumin, 2022. "Application and evaluation of phase change materials for improving photovoltaic power generation efficiency and roof overheating reduction," Renewable Energy, Elsevier, vol. 195(C), pages 1412-1425.
    19. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    20. Tang, Yayun & Zhang, Chengyan & Ji, Jie & Xie, Hao, 2025. "Semi-transparent BIPV/T System's synergistic operation with air treatment for electricity generation and complementary cold-heat utilization: Assessment of energy and daylight performance," Applied Energy, Elsevier, vol. 383(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5460-:d:1678396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.