IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124019827.html
   My bibliography  Save this article

Life cycle cost analysis of circular photovoltaic façade in dense urban environment using 3D modeling

Author

Listed:
  • Li, Qingxiang
  • Long, Lingege
  • Li, Xinwei
  • Yang, Guidong
  • Bian, Chenhang
  • Zhao, Benyun
  • Chen, Xi
  • Chen, Ben M.

Abstract

Photovoltaic façade gradually diffuses in dense urban environment for decarbonization. In this study, life cycle cost analysis is applied to assess the economic feasibility of circular photovoltaic façade. An innovative aerial video-based 3D modeling method is developed to reconstruct the target structures, significantly reducing time and labor costs in modeling work. Given the recycling potential, this study develops a workflow to recycle photovoltaic components to save the spence. Multi-objective optimization is conducted to identify the optimal configuration of photovoltaic facades given an initial budget constraint. A representative building in Central Business District is selected to validate the effectiveness of the proposed method. Then the simulation is extended to major metropolises in China. The results demonstrate that the 3D modeling method can successfully reconstruct target structures, allowing for accurate simulation of solar radiation access and assessment of the economic feasibility of photovoltaic facades. Moreover, the photovoltaic façade on the selected building is not profitable without recycling. Some cities achieve profitability when the proposed recycling strategy is implemented. This highlights the importance of recycling in achieving economic viability. The study promotes further studies exploring the feasible deployment of photovoltaic façades in dense urban environments.

Suggested Citation

  • Li, Qingxiang & Long, Lingege & Li, Xinwei & Yang, Guidong & Bian, Chenhang & Zhao, Benyun & Chen, Xi & Chen, Ben M., 2025. "Life cycle cost analysis of circular photovoltaic façade in dense urban environment using 3D modeling," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019827
    DOI: 10.1016/j.renene.2024.121914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Li & Zhang, Jiqiang & Li, Qingxiang & Shao, Zebiao & Chen, Mengdong & Yang, Yang & Sun, Yong, 2020. "Comprehensive analysis of heat transfer of double-skin facades integrated high concentration photovoltaic (CPV-DSF)," Renewable Energy, Elsevier, vol. 161(C), pages 635-649.
    2. Li, Qingxiang & Zanelli, Alessandra, 2021. "A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    4. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Shirazi, Ali Mohammad & Zomorodian, Zahra S. & Tahsildoost, Mohammad, 2019. "Techno-economic BIPV evaluation method in urban areas," Renewable Energy, Elsevier, vol. 143(C), pages 1235-1246.
    6. Li, Qingxiang & Zhu, Li & Sun, Yong & Lu, Lin & Yang, Yang, 2020. "Performance prediction of Building Integrated Photovoltaics under no-shading, shading and masking conditions using a multi-physics model," Energy, Elsevier, vol. 213(C).
    7. An, Young-sub & Kim, Jong-kyu & Joo, Hong-Jin & Lee, Wang-Jae & Han, Gwang-woo & Kim, Haneul & Kim, Min-Hwi, 2023. "Experimental performance analysis of photovoltaic systems applied to an positive energy community based on building renovation," Renewable Energy, Elsevier, vol. 219(P1).
    8. Li, Qingxiang & Monticelli, Carol & Zanelli, Alessandra, 2022. "Life cycle assessment of organic solar cells and perovskite solar cells with graphene transparent electrodes," Renewable Energy, Elsevier, vol. 195(C), pages 906-917.
    9. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qingxiang & Yang, Guidong & Bian, Chenhang & Long, Lingege & Wang, Xinyi & Gao, Chuanxiang & Wong, Choi Lam & Huang, Yijun & Zhao, Benyun & Chen, Xi & Chen, Ben M., 2025. "Autonomous design framework for deploying building integrated photovoltaics," Applied Energy, Elsevier, vol. 377(PD).
    2. Jurgis Zagorskas & Zenonas Turskis, 2025. "Performance Evaluation and Integration Strategies for Solar Façades in Diverse Climates: A State-of-the-Art Review," Sustainability, MDPI, vol. 17(3), pages 1-31, January.
    3. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    4. Onwuemezie, Linus, 2024. "Rural development through solar and pyrolysis systems: Towards energy sustainability," Renewable Energy, Elsevier, vol. 237(PA).
    5. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    6. Zhang, Tingsheng & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2024. "A portable balloon integrated photovoltaic system deployed at low altitude," Energy, Elsevier, vol. 313(C).
    7. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    8. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Khanahmadi, Abbas & Ghaffarpour, Reza, 2022. "A cost-effective and emission-Aware hybrid system considering uncertainty: A case study in a remote area," Renewable Energy, Elsevier, vol. 201(P1), pages 977-992.
    10. Xing Zhu & Baoyu Liao, 2023. "Optimal investment decision for photovoltaic projects in China: a real options method," Journal of Combinatorial Optimization, Springer, vol. 46(5), pages 1-26, December.
    11. Liu, Zhengguang & Wang, Wene & Chen, Yuntian & Wang, Lili & Guo, Zhiling & Yang, Xiaohu & Yan, Jinyue, 2023. "Solar harvest: Enhancing carbon sequestration and energy efficiency in solar greenhouses with PVT and GSHP systems," Renewable Energy, Elsevier, vol. 211(C), pages 112-125.
    12. Kraemer, Carlo, 2024. "Using DNPV to determine the economic viability of residential photovoltaic systems in Germany: Is the investment still worth it?," Renewable Energy, Elsevier, vol. 237(PA).
    13. Liu, Junling & Li, Mengyue & Xue, Liya & Kobashi, Takuro, 2022. "A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level," Renewable Energy, Elsevier, vol. 200(C), pages 647-657.
    14. Feijoo, Felipe & Kundu, Abhishake & Flores, Francisco & Matamala, Yolanda, 2024. "Photovoltaic sizing assessment for microgrid communities under load shifting constraints and endogenous electricity prices: A Stackelberg approach," Energy, Elsevier, vol. 307(C).
    15. Chungil Kim & Hyung-Jun Song, 2022. "Glare-Free Airport-Based Photovoltaic System via Optimization of Its Azimuth Angle," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    16. Li, Qingxiang & Zanelli, Alessandra, 2021. "A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Luo, Shunjun & Zhang, Shaohui, 2022. "How R&D expenditure intermediate as a new determinants for low carbon energy transition in Belt and Road Initiative economies," Renewable Energy, Elsevier, vol. 197(C), pages 101-109.
    18. Vuk Milošević & Janusz Marchwiński & Elena Lucchi, 2025. "Strain Analysis of Membrane Structures for Photovoltaic Integration in Built Environment," Sustainability, MDPI, vol. 17(3), pages 1-34, January.
    19. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    20. Tham, Pham Ngoc & Thuy, Truong Dang & Nam, Pham Khanh & Papyrakis, Elissaios, 2025. "Policy uncertainty, public perception, and the preferences for rooftop solar power systems: A choice experiment study in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.