Author
Listed:
- Kevin López-Eugenio
(Centro de Investigación en Mecatrónica y Sistemas Interactivos (MIST), Facultad de Ingenierías, Maestría en Big Data y Ciencia de Datos, Universidad Tecnológica Indoamérica, Ambato 180103, Ecuador)
- Pedro Torres-Bermeo
(Centro de Investigación en Mecatrónica y Sistemas Interactivos (MIST), Facultad de Ingenierías, Maestría en Big Data y Ciencia de Datos, Universidad Tecnológica Indoamérica, Ambato 180103, Ecuador)
- Carolina Del-Valle-Soto
(Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Mexico)
- José Varela-Aldás
(Centro de Investigación en Mecatrónica y Sistemas Interactivos (MIST), Facultad de Ingenierías, Maestría en Big Data y Ciencia de Datos, Universidad Tecnológica Indoamérica, Ambato 180103, Ecuador)
Abstract
The increasing adoption of photovoltaic systems presents new challenges for energy planning and grid stability. This study proposes a fuzzy logic-based methodology to identify potential PV adopters by integrating variables such as energy consumption, electricity tariff, solar radiation, and socioeconomic level. The approach was applied to a real distribution grid and compared against a previously presented method that selects users based solely on high energy consumption. The fuzzy logic model demonstrated superior performance by identifying 77.03 [%] of real adopters, outperforming the previous selection strategy. Additionally, the study evaluates the technical impact of PV integration on the distribution grid through power flow simulations, analysing energy losses, voltage stability, and asset loadability. Findings highlight that while PV systems reduce energy losses, they can also introduce voltage regulation challenges under high penetration. The proposed methodology serves as a decision-support tool for utilities and regulators, enhancing the accuracy of adoption projections and informing infrastructure planning. Its flexibility and rule-based nature make it adaptable to different regulatory and technical environments, allowing it to be replicated globally for sustainable energy transition initiatives.
Suggested Citation
Kevin López-Eugenio & Pedro Torres-Bermeo & Carolina Del-Valle-Soto & José Varela-Aldás, 2025.
"Projection of Photovoltaic System Adoption and Its Impact on a Distributed Power Grid Using Fuzzy Logic,"
Sustainability, MDPI, vol. 17(12), pages 1-28, June.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:12:p:5235-:d:1673214
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5235-:d:1673214. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.