IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2425-d1609169.html
   My bibliography  Save this article

Comprehensive Assessment and Obstacle Analysis on Low-Carbon Development Quality of 30 Provincial Regions in China

Author

Listed:
  • Haoran Zhao

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Zhen Yang

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Shunan Wu

    (China Energy Capital Holdings Co., Ltd., Beijing 100044, China)

  • Zhuowen Zhang

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Chuan Li

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Chunhua Jin

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Sen Guo

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Low-carbon development (LCD) in China has become the critical measure to achieve sustainable development and handle climate change. This investigation evaluates 30 provincial regions’ LCD quality from dimensions of low-carbon (LC) economy, resources utilization, LC environment, and LC society. According to the integrated weights combined subjective weights identified through the best–worst method (BWM) and objective weights attained through the anti-entropy weight (AEW) method, the top five sub-criteria in 2021 were coal consumption relative to total primary energy consumption, industrial sulfur dioxide (SO 2 ) emission, carbon dioxide emissions intensity, industrial dust emission, and forest coverage rate. According to the comprehensive evaluation results obtained through the MARCOS model, Beijing’s comprehensive score is far ahead, and its scores in resource utilization, LC environment, and LC economy are also in a leading position. Moreover, the level of LCD quality shows a gradually reduced pattern from east to west. The obstacle analysis demonstrates that the obstacle factors with high frequency of occurrence include real GDP, energy intensity, coal consumption relative to total primary energy consuming, carbon dioxide emissions intensity, industrial dust emission, industrial SO 2 emission, forest coverage rate, and the number of private vehicles. Suggestions are proposed based on the results, including increase infrastructure construction, optimize energy structure and develop renewable energy, protect the ecological environment with intensify efforts, and accelerate industrial transformation and upgrading to optimize industrial structure.

Suggested Citation

  • Haoran Zhao & Zhen Yang & Shunan Wu & Zhuowen Zhang & Chuan Li & Chunhua Jin & Sen Guo, 2025. "Comprehensive Assessment and Obstacle Analysis on Low-Carbon Development Quality of 30 Provincial Regions in China," Sustainability, MDPI, vol. 17(6), pages 1-27, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2425-:d:1609169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying QU & Yue LIU, 2017. "Evaluating the low-carbon development of urban China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 939-953, June.
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. Haixiang Guo & Xiao Liu & Yijing Li & Deyun Wang & Xiaohong Chen, 2015. "Comparison Analysis and Evaluation of Urban Competitiveness in Chinese Urban Clusters," Sustainability, MDPI, vol. 7(4), pages 1-23, April.
    4. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    5. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    2. Halil Ibrahim Cicekdagi & Ertugrul Ayyildiz & Mehmet Cabir Akkoyunlu, 2023. "Enhancing search and rescue team performance: investigating factors behind social loafing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1315-1340, December.
    3. Junnan Wu & Xin Liu & Dianqi Pan & Yichen Zhang & Jiquan Zhang & Kai Ke, 2023. "Research on Safety Evaluation of Municipal Sewage Treatment Plant Based on Improved Best-Worst Method and Fuzzy Comprehensive Method," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    4. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    5. Pushparenu Bhattacharjee & Syed Abou Iltaf Hussain & V. Dey & U. K. Mandal, 2023. "Failure mode and effects analysis for submersible pump component using proportionate risk assessment model: a case study in the power plant of Agartala," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1778-1798, October.
    6. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    7. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    8. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    9. Ghadimi, Pezhman & Donnelly, Oisin & Sar, Kubra & Wang, Chao & Azadnia, Amir Hossein, 2022. "The successful implementation of industry 4.0 in manufacturing: An analysis and prioritization of risks in Irish industry," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. Mostafayi Darmian, Sobhan & Tavana, Madjid & Ribeiro-Navarrete, Samuel, 2024. "An investment evaluation and incentive allocation model for public-private partnerships in renewable energy development projects," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    11. Guang-Jun Jiang & Cheng-Geng Huang & Arman Nedjati & Mohammad Yazdi, 2024. "Discovering the sustainable challenges of biomass energy: a case study of Tehran metropolitan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 3957-3992, February.
    12. Liu, Xiao & Li, Ming-Yang, 2024. "Sustainable service product design method: Focus on customer demands and triple bottom line," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    13. Junli Zhang & Guoteng Wang & Zheng Xu & Zheren Zhang, 2022. "A Comprehensive Evaluation Method and Strengthening Measures for AC/DC Hybrid Power Grids," Energies, MDPI, vol. 15(12), pages 1-20, June.
    14. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    15. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    16. Corrente, Salvatore & Greco, Salvatore & Rezaei, Jafar, 2024. "Better decisions with less cognitive load: The Parsimonious BWM," Omega, Elsevier, vol. 126(C).
    17. Ebrahim Sharifi & Saman Hassanzadeh Amin & Liping Fang, 2025. "Assessing sustainability of food supply chains by using a novel method integrating group multi-criteria decision-making and interval Type-2 fuzzy set," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 3665-3705, February.
    18. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    19. Mevlut Uyan & Jarosław Janus & Ela Ertunç, 2023. "Land Use Suitability Model for Grapevine ( Vitis vinifera L.) Cultivation Using the Best Worst Method: A Case Study from Ankara/Türkiye," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    20. Ridvan Ertugrul Yildirim & Aziz Sisman, 2025. "Spatial Decision Support for Determining Suitable Emergency Assembly Places Using GIS and MCDM Techniques," Sustainability, MDPI, vol. 17(5), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2425-:d:1609169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.