IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1025-d1578137.html
   My bibliography  Save this article

A Study on Sustainability Indicators for Energy Companies in Viet Nam

Author

Listed:
  • Jung-Fa Tsai

    (Department of Business Management, National Taipei University of Technology, Taipei 106344, Taiwan)

  • Ruey-Chu Lee

    (Department of Business Management, National Taipei University of Technology, Taipei 106344, Taiwan)

  • Dinh-Hieu Tran

    (Department of Business Management, National Taipei University of Technology, Taipei 106344, Taiwan)

  • Minh-Chau Hoang

    (Department of Business Management, National Taipei University of Technology, Taipei 106344, Taiwan)

  • Ming-Hua Lin

    (Department of Urban Industrial Management and Marketing, University of Taipei, Taipei 111036, Taiwan)

Abstract

The energy sector is a cornerstone of Viet Nam’s economic growth, providing critical contributions to development and employment. However, ensuring its long-term sustainability remains a pressing challenge. This study leverages the United Nations’ ESG framework to develop a comprehensive structure for sustainable management indicators tailored to Viet Nam’s energy industry. Through expert interviews and systematic analysis using the modified Delphi and DEMATEL methods, the study identified “Cost Management” as the most critical sustainability indicator, influencing other key areas. Additionally, “Innovation Management”, “Renewable Energy”, “Vocational Training”, and “Human Capital Development” emerged as pivotal for driving sustainability. These findings underscore the importance of aligning sustainability practices with operational efficiency and innovation. The study highlights the urgent need for energy companies to adopt targeted solutions such as cost optimization, investments in renewable technologies, and workforce development to foster sustainable growth. By offering actionable insights and a prioritized framework, this research provides energy companies and policymakers with a practical roadmap to enhance Viet Nam’s energy sustainability and support its economic recovery post-COVID-19.

Suggested Citation

  • Jung-Fa Tsai & Ruey-Chu Lee & Dinh-Hieu Tran & Minh-Chau Hoang & Ming-Hua Lin, 2025. "A Study on Sustainability Indicators for Energy Companies in Viet Nam," Sustainability, MDPI, vol. 17(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1025-:d:1578137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stamford, Laurence & Azapagic, Adisa, 2011. "Sustainability indicators for the assessment of nuclear power," Energy, Elsevier, vol. 36(10), pages 6037-6057.
    2. Sovacool, Benjamin K. & Griffiths, Steve, 2020. "The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    4. Abdulla Alabbasi & Jhuma Sadhukhan & Matthew Leach & Mohammed Sanduk, 2022. "Sustainable Indicators for Integrating Renewable Energy in Bahrain’s Power Generation," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    5. Catalina Turcu, 2013. "Re-thinking sustainability indicators: local perspectives of urban sustainability," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(5), pages 695-719, June.
    6. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    7. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    8. Li, Yongbo & Barrueta Pinto, Mark Christhian & Kumar, D. Thresh, 2023. "Analyzing sustainability indicator for Chinese mining sector," Resources Policy, Elsevier, vol. 80(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willem Brauers, 2013. "Multi-objective seaport planning by MOORA decision making," Annals of Operations Research, Springer, vol. 206(1), pages 39-58, July.
    2. Pawel Tadeusz Kazibudzki, 2023. "The uncertainty related to the inexactitude of prioritization based on consistent pairwise comparisons," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-30, September.
    3. Chia-Wei Hsu & Tsai-Chi Kuo & Guey-Shin Shyu & Pi-Shen Chen, 2014. "Low Carbon Supplier Selection in the Hotel Industry," Sustainability, MDPI, vol. 6(5), pages 1-27, May.
    4. Miguel Ortíz-Barrios & Natalia Jaramillo-Rueda & Muhammet Gul & Melih Yucesan & Genett Jiménez-Delgado & Juan-José Alfaro-Saíz, 2023. "A Fuzzy Hybrid MCDM Approach for Assessing the Emergency Department Performance during the COVID-19 Outbreak," IJERPH, MDPI, vol. 20(5), pages 1-39, March.
    5. Willem K. M. Brauers, 2018. "Location Theory and Multi-Criteria Decision Making: An Application of the MOORA Method," Contemporary Economics, Vizja University, vol. 12(3), September.
    6. Vicent Penadés-Plà & Tatiana García-Segura & José V. Martí & Víctor Yepes, 2016. "A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    7. Chia-Lee Yang & Ming-Chang Shieh & Chi-Yo Huang & Ching-Pin Tung, 2018. "A Derivation of Factors Influencing the Successful Integration of Corporate Volunteers into Public Flood Disaster Inquiry and Notification Systems," Sustainability, MDPI, vol. 10(6), pages 1-31, June.
    8. Gwo-Hshiung Tzeng & Chi-Yo Huang, 2012. "Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems," Annals of Operations Research, Springer, vol. 197(1), pages 159-190, August.
    9. Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    11. Lin, Sheng-Hau & Huang, Xianjin & Fu, Guole & Chen, Jia-Tsong & Zhao, Xiaofeng & Li, Jia-Hsuan & Tzeng, Gwo-Hshiung, 2021. "Evaluating the sustainability of urban renewal projects based on a model of hybrid multiple-attribute decision-making," Land Use Policy, Elsevier, vol. 108(C).
    12. Tsai, Pei-Hsuan & Kao, Ya-Ling & Kuo, Szu-Yu, 2023. "Exploring the critical factors influencing the outlying island talent recruitment and selection evaluation model: Empirical evidence from Penghu, Taiwan," Evaluation and Program Planning, Elsevier, vol. 99(C).
    13. Chih-Hung Hsu & Xu He & Ting-Yi Zhang & An-Yuan Chang & Wan-Ling Liu & Zhi-Qiang Lin, 2022. "Enhancing Supply Chain Agility with Industry 4.0 Enablers to Mitigate Ripple Effects Based on Integrated QFD-MCDM: An Empirical Study of New Energy Materials Manufacturers," Mathematics, MDPI, vol. 10(10), pages 1-35, May.
    14. Ghaith Falah Ziarh & Jin Hyuck Kim & Seung Taek Chae & Hae-Yeol Kang & Changyu Hong & Jae Yeol Song & Eun-Sung Chung, 2024. "Identifying the Contributing Sources of Uncertainties in Urban Flood Vulnerability in South Korea Considering Multiple GCMs, SSPs, Weight Determination Methods, and MCDM Techniques," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    15. Chi-Yo Huang & Hong-Ling Hsieh & Hueiling Chen, 2020. "Evaluating the Investment Projects of Spinal Medical Device Firms Using the Real Option and DANP-mV Based MCDM Methods," IJERPH, MDPI, vol. 17(9), pages 1-41, May.
    16. Elzbieta Broniewicz & Karolina Ogrodnik, 2021. "A Comparative Evaluation of Multi-Criteria Analysis Methods for Sustainable Transport," Energies, MDPI, vol. 14(16), pages 1-23, August.
    17. N Deepa & Durai Raj Vincent P M & Senthil Kumar N & Kathiravan Srinivasan & Chuan-Yu Chang & Ali Kashif Bashir, 2019. "An Efficient Ensemble VTOPES Multi-Criteria Decision-Making Model for Sustainable Sugarcane Farms," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    18. Nien-Ping Chen & Kao-Yi Shen & Chiung-Ju Liang, 2021. "Hybrid Decision Model for Evaluating Blockchain Business Strategy: A Bank’s Perspective," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    19. Mladen Krstić & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Snežana Tadić & Violeta Roso, 2022. "Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    20. Jim-Yuh Huang & Kao-Yi Shen & Joseph C.P. Shieh & Gwo-Hshiung Tzeng, 2019. "Strengthen Financial Holding Companies’ Business Sustainability by Using a Hybrid Corporate Governance Evaluation Model," Sustainability, MDPI, vol. 11(3), pages 1-27, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1025-:d:1578137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.