IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0290751.html
   My bibliography  Save this article

The uncertainty related to the inexactitude of prioritization based on consistent pairwise comparisons

Author

Listed:
  • Pawel Tadeusz Kazibudzki

Abstract

When the in/consistency in Pairwise Comparisons (PCs) is taken into consideration as the subarea of the Multi Attribute Decision Making (MADM) scientific field, it has many repercussions in various types of research areas including different modelling scenarios e.g. reduction of inconsistency during PCs, deriving appropriate consistency thresholds for inconsistent Pairwise Comparison Matrices (PCMs), completing of incomplete PCMs, aggregating of individual PCMs in relation to Group Decision Making (GDM) aspects, and PCMs in/consistency relation to credibility of Priority Vectors (PV) derived from PCMs with the application of various Priorities Deriving Methods (PDMs). The examination objective in the latter area of research is the uncertainty related to the inexactitude of prioritization based on derived PVs. However, only few research studies examine this problem from the perspective of PCM applicability for credible designation of decision maker’s (DM) priorities in the way that leads to minimization of the prioritization uncertainty related to possible, and sometimes very probable, ranking fluctuations. This problem constitutes the primary area of interest for this research paper as no research study was thus far identified that examines this problem from the perspective of consistent PCMs. Hence, a research gap was identified. Thus, the objective of this research paper is to fill in this scientific gap. The research findings have serious repercussions in relation to prioritization quality with the application of PCs methodology, mostly in relation to the interpretation and reliability evaluation of prioritization results. Firstly, the research study outcome changes the perspective of the rank reversal phenomenon, which shed new light on many research studies that have been presented in the subject’s literature for many decades. Secondly, the research study results throw new light on the discussion concerning the fuzziness of AHP’s results. Last but not least, the effect of the research opens the unique opportunity to evaluate the prioritization outcome obtained within the process of consistent PCs from the well-known perspective of statistical hypothesis testing i.e. the probability designation of the chance that accepted ranking results which were considered as correct due to low probability of change may be incorrect, hence they should be rejected, and the probability designation of the chance that rejected ranking results which were considered as incorrect due to high probability of change may be correct and should be accepted. The paramount finding of the research is the fact that consistent PCMs provide PVs, which elements cannot be considered as established, but only approximated within certain confidence intervals estimated with a certain level of probability. As problems related to heuristics can be analyzed only via a computer simulation process, because they cannot be mathematically determined, the problem examined in this research paper is examined via Monte Carlo simulations, appropriately coded and executed with the application of Wolfram’s Mathematica Software. It is believed that this research findings should be very important and useful for all decision makers and researchers during their problems‘ examinations that relate to prioritization processes with the application of PCs methodology.

Suggested Citation

  • Pawel Tadeusz Kazibudzki, 2023. "The uncertainty related to the inexactitude of prioritization based on consistent pairwise comparisons," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-30, September.
  • Handle: RePEc:plo:pone00:0290751
    DOI: 10.1371/journal.pone.0290751
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290751
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0290751&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0290751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aguaron, Juan & Moreno-Jimenez, Jose Maria, 2003. "The geometric consistency index: Approximated thresholds," European Journal of Operational Research, Elsevier, vol. 147(1), pages 137-145, May.
    2. Matteo Brunelli & Michele Fedrizzi, 2019. "A general formulation for some inconsistency indices of pairwise comparisons," Annals of Operations Research, Springer, vol. 274(1), pages 155-169, March.
    3. Bana e Costa, Carlos A. & Vansnick, Jean-Claude, 2008. "A critical analysis of the eigenvalue method used to derive priorities in AHP," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1422-1428, June.
    4. Siraj, Sajid & Mikhailov, Ludmil & Keane, John A., 2015. "Contribution of individual judgments toward inconsistency in pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 242(2), pages 557-567.
    5. Alessio Ishizaka & Markus Lusti, 2006. "How to derive priorities in AHP: a comparative study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(4), pages 387-400, December.
    6. Matteo Brunelli & Michele Fedrizzi, 2015. "Axiomatic properties of inconsistency indices for pairwise comparisons," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(1), pages 1-15, January.
    7. Pedro Linares & Sara Lumbreras & Alberto Santamaría & Andrea Veiga, 2016. "How relevant is the lack of reciprocity in pairwise comparisons? An experiment with AHP," Annals of Operations Research, Springer, vol. 245(1), pages 227-244, October.
    8. Carmone, Frank J. & Kara, Ali & Zanakis, Stelios H., 1997. "A Monte Carlo investigation of incomplete pairwise comparison matrices in AHP," European Journal of Operational Research, Elsevier, vol. 102(3), pages 538-553, November.
    9. Abbas Mardani & Ahmad Jusoh & Khalil MD Nor & Zainab Khalifah & Norhayati Zakwan & Alireza Valipour, 2015. "Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 28(1), pages 516-571, January.
    10. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Dai, Min, 2008. "A comparative study of the numerical scales and the prioritization methods in AHP," European Journal of Operational Research, Elsevier, vol. 186(1), pages 229-242, April.
    11. L Mikhailov, 2000. "A fuzzy programming method for deriving priorities in the analytic hierarchy process," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(3), pages 341-349, March.
    12. Sándor Bozóki & Linda Dezső & Attila Poesz & József Temesi, 2013. "Analysis of pairwise comparison matrices: an empirical research," Annals of Operations Research, Springer, vol. 211(1), pages 511-528, December.
    13. Lootsma, F. A., 1996. "A model for the relative importance of the criteria in the Multiplicative AHP and SMART," European Journal of Operational Research, Elsevier, vol. 94(3), pages 467-476, November.
    14. Fedrizzi, Michele & Giove, Silvio, 2007. "Incomplete pairwise comparison and consistency optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 303-313, November.
    15. Brunelli, Matteo & Fedrizzi, Michele, 2015. "Boundary properties of the inconsistency of pairwise comparisons in group decisions," European Journal of Operational Research, Elsevier, vol. 240(3), pages 765-773.
    16. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    17. Anita Kwartnik-Pruc & Grzegorz Ginda & Anna Trembecka, 2022. "Using the DEMATEL Method to Identify Impediments to the Process of Determining Compensation for Expropriated Properties," Land, MDPI, vol. 11(5), pages 1-21, May.
    18. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, December.
    19. Sangeeta Pant & Anuj Kumar & Mangey Ram & Yury Klochkov & Hitesh Kumar Sharma, 2022. "Consistency Indices in Analytic Hierarchy Process: A Review," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    20. Seyed Saeed Hosseinian & Hamidreza Navidi & Abas Hajfathaliha, 2012. "A New Linear Programming Method for Weights Generation and Group Decision Making in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 21(3), pages 233-254, May.
    21. Belton, Valerie & Gear, Tony, 1985. "The legitimacy of rank reversal--A comment," Omega, Elsevier, vol. 13(3), pages 143-144.
    22. Majumdar, Abhijit & Tiwari, Manoj Kumar & Agarwal, Aastha & Prajapat, Kanika, 2021. "A new case of rank reversal in analytic hierarchy process due to aggregation of cost and benefit criteria," Operations Research Perspectives, Elsevier, vol. 8(C).
    23. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    24. Lin, Chang-Chun, 2007. "A revised framework for deriving preference values from pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1145-1150, January.
    25. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    26. Michele Fedrizzi & Nino Civolani & Andrew Critch, 2020. "Inconsistency evaluation in pairwise comparison using norm-based distances," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 657-672, December.
    27. Stein, William E. & Mizzi, Philip J., 2007. "The harmonic consistency index for the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 177(1), pages 488-497, February.
    28. Thomas Saaty & Luis Vargas, 2012. "The possibility of group choice: pairwise comparisons and merging functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 481-496, March.
    29. Ljubomir Gigović & Dragan Pamučar & Zoran Bajić & Milić Milićević, 2016. "The Combination of Expert Judgment and GIS-MAIRCA Analysis for the Selection of Sites for Ammunition Depots," Sustainability, MDPI, vol. 8(4), pages 1-30, April.
    30. Tomashevskii, I.L., 2015. "Eigenvector ranking method as a measuring tool: Formulas for errors," European Journal of Operational Research, Elsevier, vol. 240(3), pages 774-780.
    31. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    32. László Csató, 2018. "Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom," Group Decision and Negotiation, Springer, vol. 27(6), pages 1011-1027, December.
    33. Zanakis, Stelios H. & Solomon, Anthony & Wishart, Nicole & Dublish, Sandipa, 1998. "Multi-attribute decision making: A simulation comparison of select methods," European Journal of Operational Research, Elsevier, vol. 107(3), pages 507-529, June.
    34. Zahedi, Fatemeh, 1986. "A simulation study of estimation methods in the analytic hierarchy process," Socio-Economic Planning Sciences, Elsevier, vol. 20(6), pages 347-354.
    35. Saeed Shahabi & Shahina Pardhan & Ahmad Ahmadi Teymourlouy & Dimitrios Skempes & Shabnam Shahali & Parviz Mojgani & Maryam Jalali & Kamran Bagheri Lankarani, 2021. "Prioritizing solutions to incorporate Prosthetics and Orthotics services into Iranian health benefits package: Using an analytic hierarchy process," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-13, June.
    36. Cook, Wade D. & Kress, Moshe, 1988. "Deriving weights from pairwise comparison ratio matrices: An axiomatic approach," European Journal of Operational Research, Elsevier, vol. 37(3), pages 355-362, December.
    37. Natalie M. Scala & Jayant Rajgopal & Luis G. Vargas & Kim LaScola Needy, 2016. "Group Decision Making with Dispersion in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 25(2), pages 355-372, March.
    38. Paul Thaddeus Kazibudzki, 2019. "An Examination of Ranking Quality for Simulated Pairwise Judgments in relation to Performance of the Selected Consistency Measure," Advances in Operations Research, Hindawi, vol. 2019, pages 1-24, February.
    39. Chi-Jui Tsai & Wen-Jye Shyr, 2022. "Using the DEMATEL Method to Explore Influencing Factors for Video Communication and Visual Perceptions in Social Media," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.
    2. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    3. Matteo Brunelli, 2017. "Studying a set of properties of inconsistency indices for pairwise comparisons," Annals of Operations Research, Springer, vol. 248(1), pages 143-161, January.
    4. Paul Thaddeus Kazibudzki, 2016. "An examination of performance relations among selected consistency measures for simulated pairwise judgments," Annals of Operations Research, Springer, vol. 244(2), pages 525-544, September.
    5. Jiří Mazurek, 2018. "Some notes on the properties of inconsistency indices in pairwise comparisons," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 27-42.
    6. Marcin Anholcer & János Fülöp, 2019. "Deriving priorities from inconsistent PCM using network algorithms," Annals of Operations Research, Springer, vol. 274(1), pages 57-74, March.
    7. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    8. József Temesi, 2019. "An interactive approach to determine the elements of a pairwise comparison matrix," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 533-549, June.
    9. Sangeeta Pant & Anuj Kumar & Mangey Ram & Yury Klochkov & Hitesh Kumar Sharma, 2022. "Consistency Indices in Analytic Hierarchy Process: A Review," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    10. Siraj, Sajid & Mikhailov, Ludmil & Keane, John A., 2015. "Contribution of individual judgments toward inconsistency in pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 242(2), pages 557-567.
    11. Mukherjee, Krishnendu, 2014. "Analytic hierarchy process and technique for order preference by similarity to ideal solution: a bibliometric analysis from past, present and future of AHP and TOPSIS," MPRA Paper 59887, University Library of Munich, Germany.
    12. Jiří Mazurek & Konrad Kulakowski, 2020. "Information gap in value propositions of business models of language schools," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 77-89.
    13. József Temesi, 2011. "Pairwise comparison matrices and the error-free property of the decision maker," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(2), pages 239-249, June.
    14. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    15. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    16. Kevin Kam Fung Yuen, 2014. "The Least Penalty Optimization Prioritization Operators for the Analytic Hierarchy Process: A Revised Case of Medical Decision Problem of Organ Transplantation," Systems Engineering, John Wiley & Sons, vol. 17(4), pages 442-461, December.
    17. Vladimír Bureš & Jiří Cabal & Pavel Čech & Karel Mls & Daniela Ponce, 2020. "The Influence of Criteria Selection Method on Consistency of Pairwise Comparison," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
    18. László Csató, 2019. "Axiomatizations of inconsistency indices for triads," Annals of Operations Research, Springer, vol. 280(1), pages 99-110, September.
    19. Liu, Fang & Zou, Shu-Cai & Li, Qing, 2020. "Deriving priorities from pairwise comparison matrices with a novel consistency index," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    20. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0290751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.