IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p9314-d1775614.html
   My bibliography  Save this article

Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method

Author

Listed:
  • Canberk Hazar

    (Department of Marine Engineering, Zonguldak Bülent Ecevit University, 67300 Zonguldak, Turkey)

  • Alper Seyhan

    (Department of Maritime Transportation and Management Engineering, Zonguldak Bülent Ecevit University, 67300 Zonguldak, Turkey)

Abstract

The shipping industry remains heavily dependent on heavy fuel oils, which account for approximately 77% of fuel consumption and contribute significantly to greenhouse gas (GHG) emissions. In line with the IMO’s decarbonization targets, ammonia has emerged as a promising carbon-free alternative. This study evaluates the strategic viability of ammonia, especially green production, as a marine fuel through a hybrid SWOT–Best–Worst Method (BWM) analysis, combining literature insights with expert judgment. Data were collected from 17 maritime professionals with an average of 15.7 years of experience, ensuring robust sectoral representation and methodological consistency. The results highlight that opportunities hold the greatest weight (0.352), particularly the criteria “mandatory carbon-free by 2050” (O3:0.106) and “ammonia–hydrogen climate solution” (O2:0.080). Weaknesses rank second (0.270), with “higher toxicity than other marine fuels” (W5:0.077) as the most critical concern. Strengths (0.242) underscore ammonia’s advantage as a “carbon-free and sulfur-free fuel” (S1:0.078), while threats (0.137) remain less influential, though “costly green ammonia” (T3:0.035) and “uncertainty of green ammonia” (T1:0.034) present notable risks. Overall, the analysis suggests that regulatory imperatives and environmental benefits outweigh safety, technical, and economic challenges. Ammonia demonstrates strong potential to serve as viable marine fuel in achieving the maritime sector’s long-term decarbonization goals.

Suggested Citation

  • Canberk Hazar & Alper Seyhan, 2025. "Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method," Sustainability, MDPI, vol. 17(20), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9314-:d:1775614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/9314/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/9314/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyed Behbood Issa-Zadeh & Claudia Lizette Garay-Rondero, 2025. "Decarbonizing Seaport Maritime Traffic: Finding Hope," World, MDPI, vol. 6(2), pages 1-19, April.
    2. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    3. Wang, Yadong & Zhu, Shenghui & Iris, Çağatay, 2025. "An exact algorithm for fleet co-deployment and slot co-chartering in a sustainable shipping alliance under emissions trading system," European Journal of Operational Research, Elsevier, vol. 327(2), pages 450-468.
    4. Gunnar Prause & Eunice O. Olaniyi & Wolfgang Gerstlberger, 2023. "Ammonia Production as Alternative Energy for the Baltic Sea Region," Energies, MDPI, vol. 16(4), pages 1-17, February.
    5. Phan Anh Duong & Borim Ryu & Chongmin Kim & Jinuk Lee & Hokeun Kang, 2022. "Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels," Energies, MDPI, vol. 15(9), pages 1-22, May.
    6. Antonio Chavando & Valter Silva & João Cardoso & Daniela Eusebio, 2024. "Advancements and Challenges of Ammonia as a Sustainable Fuel for the Maritime Industry," Energies, MDPI, vol. 17(13), pages 1-35, June.
    7. Jinxi Zhou & Junling Zhang & Guoxian Jiang & Kai Xie, 2024. "Using DPF to Control Particulate Matter Emissions from Ships to Ensure the Sustainable Development of the Shipping Industry," Sustainability, MDPI, vol. 16(15), pages 1-17, August.
    8. Omer Soner & Erkan Celik & Emre Akyuz, 2022. "A fuzzy best–worst method (BWM) to assess the potential environmental impacts of the process of ship recycling," Maritime Policy & Management, Taylor & Francis Journals, vol. 49(3), pages 396-409, April.
    9. Rouwenhorst, Kevin H.R. & Van der Ham, Aloijsius G.J. & Mul, Guido & Kersten, Sascha R.A., 2019. "Islanded ammonia power systems: Technology review & conceptual process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Cesaro, Zac & Ives, Matthew & Nayak-Luke, Richard & Mason, Mike & Bañares-Alcántara, René, 2021. "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    2. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    3. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    4. Sagel, Victor N. & Rouwenhorst, Kevin H.R. & Faria, Jimmy A., 2022. "Green ammonia enables sustainable energy production in small island developing states: A case study on the island of Curaçao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    6. Mucci, Simone & Stumm, Marc-Daniel & Rix, Michael J. & Mitsos, Alexander, 2025. "Model-based evaluation of ammonia energy storage concepts at high technological readiness level," Applied Energy, Elsevier, vol. 377(PB).
    7. Ricardo, Alexandre & Figueira, José Rui & Tavares, Luís Valadares, 2024. "Integrating confidence and preservation of information in the preference elicitation process: A lexicographic order approach for inconsistent judgments," Omega, Elsevier, vol. 129(C).
    8. Tran Thi Nguyet Minh & Hanh-Thi Hong Hoang & Hyung Sik Nam & Anas S. Alamoush & Phan Anh Duong, 2025. "Revisiting Port Decarbonization for Advancing a Sustainable Maritime Industry: Insights from Bibliometric Review," Sustainability, MDPI, vol. 17(10), pages 1-36, May.
    9. Georgi Todorov & Ivan Kralov & Ivailo Koprev & Hristo Vasilev & Iliyana Naydenova, 2024. "Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective," Energies, MDPI, vol. 17(4), pages 1-25, February.
    10. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Pivetta, Davide & Tafone, Alessio & Mazzoni, Stefano & Romagnoli, Alessandro & Taccani, Rodolfo, 2024. "A multi-objective planning tool for the optimal supply of green hydrogen for an industrial port area decarbonization," Renewable Energy, Elsevier, vol. 232(C).
    12. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Song, Qianqian & Wang, Bo & Wang, Zhaohua & Wen, Lei, 2024. "Multi-objective capacity configuration optimization of the combined wind - Storage system considering ELCC and LCOE," Energy, Elsevier, vol. 301(C).
    14. Halim, Iskandar & Zain, Nur Sara & Khoo, Hsien H., 2025. "Assessing the feasibility of Ammonia utilization for Power generation: A techno-economic-environmental study," Applied Energy, Elsevier, vol. 386(C).
    15. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    16. Wu, Qun & Liu, Xinwang & Zhou, Ligang & Qin, Jindong & Rezaei, Jafar, 2024. "An analytical framework for the best–worst method," Omega, Elsevier, vol. 123(C).
    17. Gaydaa AlZohbi, 2025. "Ammonia from Hydrogen: A Viable Pathway to Sustainable Transportation?," Sustainability, MDPI, vol. 17(18), pages 1-34, September.
    18. Agota Giedrė Raišienė & Simonas Juozapas Raišys, 2022. "Business Customer Satisfaction with B2B Consulting Services: AHP-Based Criteria for a New Perspective," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    19. Siamak Kheybari & Mohammad Reza Mehrpour & Paul Bauer & Alessio Ishizaka, 2024. "How Can Risk-Averse and Risk-Taking Approaches be Considered in a Group Multi-Criteria Decision-Making Problem?," Group Decision and Negotiation, Springer, vol. 33(4), pages 883-909, August.
    20. Md. Raquibuzzaman Khan & Nazia Tabassum & Niaz Ahmed Khan & Mohammad Jahangir Alam, 2022. "Procurement challenges in public-sector agricultural development projects in Bangladesh," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9314-:d:1775614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.