IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p9296-d1775154.html
   My bibliography  Save this article

A System Dynamics-Based Simulation Study on Urban Traffic Congestion Mitigation and Emission Reduction Policies

Author

Listed:
  • Xiaomei Li

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Guo Wang

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Yangyang Zhu

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Weiwei Liu

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

Urban traffic congestion and carbon emissions pose significant challenges to the sustainable development of megacities. Traditional single-policy interventions often fail to simultaneously mitigate congestion and reduce emissions effectively. This study employs a system dynamics approach to construct a multidimensional dynamic model that analyzes the feedback mechanisms and dynamic interactions of policy variables within the urban traffic system. Furthermore, a TOPSIS multi-criteria decision-making framework is integrated to quantitatively evaluate the overall effectiveness of multiple policy combinations, exploring optimization pathways for achieving synergistic governance. Using Shanghai’s traffic system as a case study, simulation analyses under six policy scenarios reveal significant discrepancies in short- and long-term policy performance. Results demonstrate that traffic congestion, carbon emissions, and environmental pollution are tightly coupled, forming a non-coordinated feedback loop that challenges single-policy solutions. For example, the “two-license-plate restriction” policy reduces traffic congestion by 2.72%, carbon emissions by 10.37%, and pollution by 2.47% compared to the baseline scenario, achieving the highest TOPSIS score of 0.68. The “new energy vehicle promotion” policy significantly contributes to long-term emission reduction; however, its overall effectiveness score is relatively low at 0.5. These findings underscore the need for a systematic approach to urban traffic governance, providing actionable insights for balancing short-term effectiveness and long-term sustainability through dynamic policy integration.

Suggested Citation

  • Xiaomei Li & Guo Wang & Yangyang Zhu & Weiwei Liu, 2025. "A System Dynamics-Based Simulation Study on Urban Traffic Congestion Mitigation and Emission Reduction Policies," Sustainability, MDPI, vol. 17(20), pages 1-32, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9296-:d:1775154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/9296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/9296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuai Chen & Ping Qin & Jie-Sheng Tan-Soo & Jintao Xu & Jun Yang, 2020. "An Econometric Approach toward Identifying the Relationship between Vehicular Traffic and Air Quality in Beijing," Land Economics, University of Wisconsin Press, vol. 96(3), pages 333-348.
    2. Hall, Jonathan D. & Palsson, Craig & Price, Joseph, 2018. "Is Uber a substitute or complement for public transit?," Journal of Urban Economics, Elsevier, vol. 108(C), pages 36-50.
    3. Lei Wen & Anqi Wang, 2023. "System dynamics model of Beijing urban public transport carbon emissions based on carbon neutrality target," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12681-12706, November.
    4. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    5. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    6. Yingsheng Su & Xin Liu & Xuejun Li, 2020. "Research on Traffic Congestion Based on System Dynamics: The Case of Chongqing, China," Complexity, Hindawi, vol. 2020, pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    2. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    4. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    5. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    6. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    7. Berger, Thor & Chen, Chinchih & Frey, Carl Benedikt, 2018. "Drivers of disruption? Estimating the Uber effect," European Economic Review, Elsevier, vol. 110(C), pages 197-210.
    8. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2022. "Author Correction: Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    9. Rick Grahn & Corey D. Harper & Chris Hendrickson & Zhen Qian & H. Scott Matthews, 2020. "Socioeconomic and usage characteristics of transportation network company (TNC) riders," Transportation, Springer, vol. 47(6), pages 3047-3067, December.
    10. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    11. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    12. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    13. Kuang, Zhonghong & Lian, Zeng & Lien, Jaimie W. & Zheng, Jie, 2020. "Serial and parallel duopoly competition in multi-segment transportation routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    14. Shizhao Zhang & Shuzhi Wang & Jiayong Zhang & Bao Wang & Hui Wang & Liwei Liu & Chong Cao & Muyang Shi & Yuhan Liu, 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis," Energies, MDPI, vol. 18(11), pages 1-31, May.
    15. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    16. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    17. Liu, Jing-Yue & Lei, Quan & Li, Ruojin & Zhang, Yue-Jun, 2024. "Resistance or motivation? Impact of climate risk on corporate greenwashing: An empirical study of Chinese enterprises," Global Finance Journal, Elsevier, vol. 62(C).
    18. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    19. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    20. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9296-:d:1775154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.