IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8159-d1746577.html

Optimal Bidding Framework for Integrated Renewable-Storage Plant in High-Dimensional Real-Time Markets

Author

Listed:
  • Yuhao Song

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Shaowei Huang

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Laijun Chen

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Sen Cui

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Shengwei Mei

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

Abstract

With the development of electricity spot markets, the integrated renewable-storage plant (IRSP) has emerged as a crucial entity in real-time energy markets due to its flexible regulation capability. However, traditional methods face computational inefficiency in high-dimensional bidding scenarios caused by expansive decision spaces, limiting online generation of multi-segment optimal quotation curves. This paper proposes a policy migration-based optimization framework for high-dimensional IRSP bidding: First, a real-time market clearing model with IRSP participation and an operational constraint-integrated bidding model are established. Second, we rigorously prove the monotonic mapping relationship between the cleared output and the real-time locational marginal price (LMP) under the market clearing condition and establish mathematical foundations for migrating the self-dispatch policy to the quotation curve based on value function concavity theory. Finally, a generalized inverse construction method is proposed to decompose the high-dimensional quotation curve optimization into optimal power response subproblems within price parameter space, substantially reducing decision space dimensionality. The case study validates the framework effectiveness through performance evaluation of policy migration for a wind-dual energy storage plant, demonstrating that the proposed method achieves 90% of the ideal revenue with a 5% prediction error and enables reinforcement learning algorithms to increase their performance from 65.1% to 84.2% of the optimal revenue. The research provides theoretical support for resolving the “dimensionality–efficiency–revenue” dilemma in high-dimensional bidding and expands policy possibilities for IRSP participation in real-time markets.

Suggested Citation

  • Yuhao Song & Shaowei Huang & Laijun Chen & Sen Cui & Shengwei Mei, 2025. "Optimal Bidding Framework for Integrated Renewable-Storage Plant in High-Dimensional Real-Time Markets," Sustainability, MDPI, vol. 17(18), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8159-:d:1746577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Najafi-Ghalelou, Afshin & Khorasany, Mohsen & Razzaghi, Reza, 2024. "Maximizing social welfare of prosumers in neighborhood battery-enabled distribution networks," Applied Energy, Elsevier, vol. 359(C).
    2. Wang, Benke & Li, Chunhua & Ban, Yongshuang & Zhao, Zeming & Wang, Zengxu, 2024. "A two-tier bidding model considering a multi-stage offer‑carbon joint incentive clearing mechanism for coupled electricity and carbon markets," Applied Energy, Elsevier, vol. 368(C).
    3. Akbari, Ebrahim & Hooshmand, Rahmat-Allah & Gholipour, Mehdi & Parastegari, Moein, 2019. "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets," Energy, Elsevier, vol. 171(C), pages 535-546.
    4. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    5. Ochoa, Tomás & Gil, Esteban & Angulo, Alejandro & Valle, Carlos, 2022. "Multi-agent deep reinforcement learning for efficient multi-timescale bidding of a hybrid power plant in day-ahead and real-time markets," Applied Energy, Elsevier, vol. 317(C).
    6. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, August.
    7. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    8. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    9. Herding, Robert & Ross, Emma & Jones, Wayne R. & Charitopoulos, Vassilis M. & Papageorgiou, Lazaros G., 2023. "Stochastic programming approach for optimal day-ahead market bidding curves of a microgrid," Applied Energy, Elsevier, vol. 336(C).
    10. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    11. Zhang, Zhenhua & Luo, Cong & Zhang, Guoxing & Shu, Yuqin & Shao, Shuai, 2024. "New energy policy and green technology innovation of new energy enterprises: Evidence from China," Energy Economics, Elsevier, vol. 136(C).
    12. Ren, Kezheng & Liu, Jun & Liu, Xinglei & Nie, Yongxin, 2023. "Reinforcement Learning-Based Bi-Level strategic bidding model of Gas-fired unit in integrated electricity and natural gas markets preventing market manipulation," Applied Energy, Elsevier, vol. 336(C).
    13. Keles, Dogan & Dehler-Holland, Joris, 2022. "Evaluation of photovoltaic storage systems on energy markets under uncertainty using stochastic dynamic programming," Energy Economics, Elsevier, vol. 106(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2022. "Electrolysis as a Flexibility Resource on Energy Islands: The Case of the North Sea," Working Papers 13-2022, Copenhagen Business School, Department of Economics.
    2. van Beuzekom, Iris & Hodge, Bri-Mathias & Slootweg, Han, 2021. "Framework for optimization of long-term, multi-period investment planning of integrated urban energy systems," Applied Energy, Elsevier, vol. 292(C).
    3. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    4. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    5. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    6. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    7. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    8. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    10. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    11. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    12. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    13. Esser, Katharina & Finke, Jonas & Bertsch, Valentin & Löschel, Andreas, 2025. "Participatory modelling to generate alternatives to support decision-makers with near-optimal decarbonisation options," Applied Energy, Elsevier, vol. 395(C).
    14. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    15. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    16. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Hoelzen, J. & Silberhorn, D. & Schenke, F. & Stabenow, E. & Zill, T. & Bensmann, A. & Hanke-Rauschenbach, R., 2025. "H2-powered aviation – Optimized aircraft and green LH2 supply in air transport networks," Applied Energy, Elsevier, vol. 380(C).
    18. Zhiwei Liao & Chengjin Li & Xiang Zhang & Qiyun Hu & Bowen Wang, 2025. "A Bidding Strategy for Power Suppliers Based on Multi-Agent Reinforcement Learning in Carbon–Electricity–Coal Coupling Market," Energies, MDPI, vol. 18(9), pages 1-18, May.
    19. Topi Rasku & Juha Kiviluoma, 2018. "A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System," Energies, MDPI, vol. 12(1), pages 1-27, December.
    20. Valencia-Díaz, Alejandro & Toro, Eliana M. & Hincapié, Ricardo A., 2025. "Optimal planning and management of the energy–water–carbon nexus in hybrid AC/DC microgrids for sustainable development of remote communities," Applied Energy, Elsevier, vol. 377(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8159-:d:1746577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.