IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7523-d1728604.html
   My bibliography  Save this article

Effectiveness of Installing a Photovoltaic System on a High-Density Building in a Hot Climate Zone

Author

Listed:
  • Bashar Alfalah

    (College of Architecture and Planning, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

Abstract

There is a growing global emphasis on reducing environmental pollution through innovative clean energy technologies, with photovoltaic systems gaining prominence as a sustainable solution. This study presents an integrated approach, combining advanced architectural modeling and dynamic energy simulation to evaluate the utilization of rooftop photovoltaic panels on a high-density higher educational building in Saudi Arabia. Utilizing detailed modeling involving Autodesk Revit and energy simulation through DesignBuilder to Level of Detail 3, the research provides unprecedented accuracy, validated against actual energy consumption data with a remarkable 92.28% precision. Notably, approximately 60% of the rooftop area is identified as suitable for photovoltaic installation, demonstrating a significant capacity to generate 1,028,494.50 kWh annually, covering 61.7% of the building’s energy needs. Financial analysis reveals robust economic benefits, including annual savings of USD 74,938.84, a payback period of under 7 years, and lifetime savings exceeding USD 1.87 million over 25 years. Seasonal variations and surplus energy during winter months are also detailed, highlighting the system’s resilience. Importantly, this study aligns with Saudi Arabia’s “Vision 2030” by showcasing the feasibility and strategic importance of rooftop photovoltaic solutions in urban educational settings within hot-climate regions, offering a pioneering contribution to sustainable urban energy planning.

Suggested Citation

  • Bashar Alfalah, 2025. "Effectiveness of Installing a Photovoltaic System on a High-Density Building in a Hot Climate Zone," Sustainability, MDPI, vol. 17(16), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7523-:d:1728604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/16/7523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/16/7523/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7523-:d:1728604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.