IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3946-d277588.html
   My bibliography  Save this article

A Simulated Study of Building Integrated Photovoltaics (BIPV) as an Approach for Energy Retrofit in Buildings

Author

Listed:
  • Yasser Farghaly

    (Architectural Engineering & Environmental Design, Arab Academy for Science, Technology & Maritime Transport, Alexandria 1029, Egypt)

  • Fatma Hassan

    (Architectural Engineering & Environmental Design, Arab Academy for Science, Technology & Maritime Transport, Alexandria 1029, Egypt)

Abstract

Building envelopes can play a significant role in controlling energy consumption, especially in hot regions because of the wide variety of envelope materials and technologies that have been developed. Currently, because of the high rise in energy prices, especially with the high demand of fossil energy in the building sector worldwide, using curtain walls for maintaining adequate lighting in public buildings could lead to higher energy consumption because of the continuous exposure to the sun in hot regions. For this reason, studying the use of renewable or smart alternatives in the building sector to ensure a cleaner, greener environment by deploying sustainable technology in order to reduce energy demand and support economic long-term solutions would be important for solving such a problem. This paper aims at studying the use of renewable energy technologies and alternatives; represented in new building integrated photovoltaics (BIPVs) technology that could be integrated within building skin to reduce energy demand. The methodology follows a quantitative comparative approach, using an energy simulation software to study two different types of BIPV technology (BISOL Premium BXO 365 Wp monocrystalline and BXU 330 Wp, polycrystalline) on an existing building by retrofitting a part of its curtain wall. This is to conclude the energy saving percentage and feasibility of both alternatives.

Suggested Citation

  • Yasser Farghaly & Fatma Hassan, 2019. "A Simulated Study of Building Integrated Photovoltaics (BIPV) as an Approach for Energy Retrofit in Buildings," Energies, MDPI, vol. 12(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3946-:d:277588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreea Paula Dumitru, 2018. "The Importance of Environmental Costs in the Current International Economic Context," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 6(1), June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suzana Domjan & Lenart Petek & Ciril Arkar & Sašo Medved, 2020. "Experimental Study on Energy Efficiency of Multi-Functional BIPV Glazed Façade Structure during Heating Season," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Skiba, Marta & Mrówczyńska, Maria & Sztubecka, Małgorzata & Bazan-Krzywoszańska, Anna & Kazak, Jan K. & Leśniak, Agnieszka & Janowiec, Filip, 2021. "Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks," Energy, Elsevier, vol. 228(C).
    3. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3946-:d:277588. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.