IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6879-d1712469.html
   My bibliography  Save this article

Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation

Author

Listed:
  • Xi Chen

    (School of Design, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Engineering Research Center for Tech of Digital Lighting, Wuhan 430074, China
    The Key Laboratory of Lighting Interactive Service and Technology Ministry for Ministry of Culture and Tourism, Wuhan 430074, China)

  • Hai Long

    (China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability.

Suggested Citation

  • Xi Chen & Hai Long, 2025. "Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation," Sustainability, MDPI, vol. 17(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6879-:d:1712469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mustafa Tahir & Sideng Hu & Haoqi Zhu, 2024. "Advanced Levelized Cost Evaluation Method for Electric Vehicle Stations Concurrently Producing Electricity and Hydrogen," Energies, MDPI, vol. 17(11), pages 1-20, May.
    2. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    3. Lu, Ning & Qin, Jun, 2024. "Optimization of tilt angle for PV in China with long-term hourly surface solar radiation," Renewable Energy, Elsevier, vol. 229(C).
    4. Muttaqee, Mahmood & Stelmach, Greg & Zanocco, Chad & Flora, June & Rajagopal, Ram & Boudet, Hilary S., 2024. "Time of use pricing and likelihood of shifting energy activities, strategies, and timing," Energy Policy, Elsevier, vol. 187(C).
    5. Shao, Chuanyong & Migan-Dubois, Anne & Diallo, Demba, 2025. "Design of Building-Installed PV system, with consideration given to the size and position of the building," Renewable Energy, Elsevier, vol. 250(C).
    6. Alharbi, Abdulaziz & Awwad, Zeyad & Habib, Abdulelah & de Weck, Olivier, 2023. "Economical sizing and multi-azimuth layout optimization of grid-connected rooftop photovoltaic systems using Mixed-Integer Programming," Applied Energy, Elsevier, vol. 335(C).
    7. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    8. Tahir, Mustafa & Hu, Sideng & Zhu, Haoqi, 2024. "Strategic operation of electric vehicle in residential microgrid with vehicle-to-home features," Energy, Elsevier, vol. 308(C).
    9. Wei, Changqi & Wang, Jiangjiang & Zhou, Yuan & Li, Yuxin & Liu, Weiliang, 2024. "Co-optimization of system configurations and energy scheduling of multiple community integrated energy systems to improve photovoltaic self-consumption," Renewable Energy, Elsevier, vol. 225(C).
    10. Bakmohammadi, Parnian & Narjabadifam, Nima & Jamshidi, Maziar & Gül, Mustafa, 2025. "A holistic framework to optimize embedding PV systems into building façades," Applied Energy, Elsevier, vol. 382(C).
    11. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    12. Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreja Stefanović & Ivana Rakonjac & Dorin Radu & Marijana Hadzima-Nyarko & Christiana Emilia Cazacu, 2025. "Technical, Economic, and Environmental Assessment of the High-Rise Building Facades as Locations for Photovoltaic Systems," Sustainability, MDPI, vol. 17(19), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    2. Kılıç Depren, Serpil & Kartal, Mustafa Tevfik & Ertuğrul, Hasan Murat & Depren, Özer, 2022. "The role of data frequency and method selection in electricity price estimation: Comparative evidence from Turkey in pre-pandemic and pandemic periods," Renewable Energy, Elsevier, vol. 186(C), pages 217-225.
    3. Aliyon, Kasra & Ritvanen, Jouni, 2024. "Deep learning-based electricity price forecasting: Findings on price predictability and European electricity markets," Energy, Elsevier, vol. 308(C).
    4. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    5. Deniz Kenan Kılıç & Peter Nielsen & Amila Thibbotuwawa, 2024. "Intraday Electricity Price Forecasting via LSTM and Trading Strategy for the Power Market: A Case Study of the West Denmark DK1 Grid Region," Energies, MDPI, vol. 17(12), pages 1-15, June.
    6. Haokun Su & Xiangang Peng & Hanyu Liu & Huan Quan & Kaitong Wu & Zhiwen Chen, 2022. "Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    7. Ciaran O'Connor & Joseph Collins & Steven Prestwich & Andrea Visentin, 2024. "Electricity Price Forecasting in the Irish Balancing Market," Papers 2402.06714, arXiv.org.
    8. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    9. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Sharma, Ekta & Salcedo-Sanz, Sancho & Barua, Prabal Datta & Rajendra Acharya, U., 2024. "Half-hourly electricity price prediction with a hybrid convolution neural network-random vector functional link deep learning approach," Applied Energy, Elsevier, vol. 374(C).
    10. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    11. Dounia El Bourakadi & Hiba Ramadan & Ali Yahyaouy & Jaouad Boumhidi, 2023. "A robust energy management approach in two-steps ahead using deep learning BiLSTM prediction model and type-2 fuzzy decision-making controller," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 645-667, December.
    12. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    13. Souhir Ben Amor & Thomas Mobius & Felix Musgens, 2024. "Bridging an energy system model with an ensemble deep-learning approach for electricity price forecasting," Papers 2411.04880, arXiv.org.
    14. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    15. Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
    16. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    17. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    18. Wei Li & Wolfgang Karl Hardle & Stefan Lessmann, 2022. "A Data-driven Case-based Reasoning in Bankruptcy Prediction," Papers 2211.00921, arXiv.org.
    19. Jiang, He & Dong, Yawei & Dong, Yao & Wang, Jianzhou, 2025. "Probabilistic electricity price forecasting by integrating interpretable model," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    20. Wang, Jianzhou & Xing, Qianyi & Zeng, Bo & Zhao, Weigang, 2022. "An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation," Applied Energy, Elsevier, vol. 327(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6879-:d:1712469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.