IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6164-d1695189.html
   My bibliography  Save this article

A Dynamic Energy-Saving Control Method for Multistage Manufacturing Systems with Product Quality Scrap

Author

Listed:
  • Penghao Cui

    (School of Business Administration, Northeastern University, Shenyang 110167, China)

  • Xiaoping Lu

    (State Key Laboratory of Massive Personalized Customization System and Technology, Qingdao 266100, China
    COSMO Industrial Intelligence Research Institute Co., Ltd., Qingdao 266500, China)

Abstract

Manufacturing industries are increasingly focused on enhancing energy efficiency while maintaining high levels of production throughput and product quality. However, most existing energy-saving control (EC) methods overlook the influence of production quality on overall energy performance. To address this challenge, this paper proposes a dynamic EC method for multistage manufacturing systems with product quality scrap. The method utilizes a Markov decision process (MDP) framework to dynamically control the operational states of all machines based on real-time system conditions. Specifically, for two-stage manufacturing systems, the dynamic EC problem is formulated as an MDP, and the optimal EC policy is obtained by a dynamic programming algorithm. For multistage manufacturing systems, to address the curse of dimensionality, an aggregation procedure is proposed to approximate the optimal EC policy for each machine based on the results of two-stage manufacturing systems. Finally, numerical experiments are performed to demonstrate the effectiveness of the proposed dynamic EC method. For a five-stage manufacturing system, the proposed dynamic EC policy achieves a 13.55% reduction in energy consumption costs and a 3.02% improvement in system throughput compared to the baseline. Extensive case studies demonstrate that the dynamic EC policy consistently outperforms three well-studied methods: the station-level EC policy, the upstream-buffer EC policy, and the energy saving opportunity window policy. Moreover, the results confirm the effectiveness of the proposed method in capturing the influence of product quality scrap on the system energy efficiency. This study presents a sensor-integrated methodology for EC, contributing to the advancement of smart manufacturing practices in alignment with Industry 4.0 initiatives.

Suggested Citation

  • Penghao Cui & Xiaoping Lu, 2025. "A Dynamic Energy-Saving Control Method for Multistage Manufacturing Systems with Product Quality Scrap," Sustainability, MDPI, vol. 17(13), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6164-:d:1695189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Barış & Karabağ, Oktay & Khayyati, Siamak, 2023. "Production and energy mode control of a production-inventory system," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1176-1187.
    2. Maroua Nouiri & Abdelghani Bekrar & Damien Trentesaux, 2020. "An energy-efficient scheduling and rescheduling method for production and logistics systems†," International Journal of Production Research, Taylor & Francis Journals, vol. 58(11), pages 3263-3283, June.
    3. Oluwaseun Niyi Anifowose & Matina Ghasemi & Banji Rildwan Olaleye, 2022. "Total Quality Management and Small and Medium-Sized Enterprises’ (SMEs) Performance: Mediating Role of Innovation Speed," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    4. Vigneashwara Pandiyan & Di Cui & Roland Axel Richter & Annapaola Parrilli & Marc Leparoux, 2025. "Real-time monitoring and quality assurance for laser-based directed energy deposition: integrating co-axial imaging and self-supervised deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 909-933, February.
    5. Giancarlo Nota & Francesco David Nota & Domenico Peluso & Alonso Toro Lazo, 2020. "Energy Efficiency in Industry 4.0: The Case of Batch Production Processes," Sustainability, MDPI, vol. 12(16), pages 1-28, August.
    6. Brundage, Michael P. & Chang, Qing & Zou, Jing & Li, Yang & Arinez, Jorge & Xiao, Guoxian, 2015. "Energy economics in the manufacturing industry: A return on investment strategy," Energy, Elsevier, vol. 93(P2), pages 1426-1435.
    7. Yunyi Kang & Feng Ju, 2019. "Flexible preventative maintenance for serial production lines with multi-stage degrading machines and finite buffers," IISE Transactions, Taylor & Francis Journals, vol. 51(7), pages 777-791, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Ahmed Japir Bataineh & Matina Ghasemi & Mazyar Ghadiri Nejad, 2023. "The Role of Green Training in the Ministry of Education’s Corporate Environmental Performance: A Mediation Analysis of Organizational Citizenship Behavior towards the Environment and Moderation Role o," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    2. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    3. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    4. Zou, Jing & Chang, Qing & Arinez, Jorge & Xiao, Guoxian, 2017. "Data-driven modeling and real-time distributed control for energy efficient manufacturing systems," Energy, Elsevier, vol. 127(C), pages 247-257.
    5. Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Xuan Su & Wenquan Dong & Jingyu Lu & Chen Chen & Weixi Ji, 2022. "Dynamic Allocation of Manufacturing Resources in IoT Job Shop Considering Machine State Transfer and Carbon Emission," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    7. Zakaria Chekoubi & Wajdi Trabelsi & Nathalie Sauer & Ilias Majdouline, 2022. "The Integrated Production-Inventory-Routing Problem with Reverse Logistics and Remanufacturing: A Two-Phase Decomposition Heuristic," Sustainability, MDPI, vol. 14(20), pages 1-30, October.
    8. Özkan, Erhun & Tan, Barış, 2025. "Asymptotically optimal energy consumption and inventory control in a make-to-stock manufacturing system," European Journal of Operational Research, Elsevier, vol. 320(2), pages 375-388.
    9. Roychaudhuri, Pritam Sankar & Kazantzi, Vasiliki & Foo, Dominic C.Y. & Tan, Raymond R. & Bandyopadhyay, Santanu, 2017. "Selection of energy conservation projects through Financial Pinch Analysis," Energy, Elsevier, vol. 138(C), pages 602-615.
    10. Tan, Barış & Karabağ, Oktay, 2024. "A deterministic fluid model for production and energy mode control of a single machine," International Journal of Production Economics, Elsevier, vol. 278(C).
    11. Rami Naimi & Maroua Nouiri & Olivier Cardin, 2021. "A Q-Learning Rescheduling Approach to the Flexible Job Shop Problem Combining Energy and Productivity Objectives," Sustainability, MDPI, vol. 13(23), pages 1-36, November.
    12. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Nobil, Erfan & Cárdenas-Barrón, Leopoldo Eduardo & Garza-Núñez, Dagoberto & Treviño-Garza, Gerardo & Céspedes-Mota, Armando & Loera-Hernández, Imelda de Jesús & Smith, Neale R. & Nobil, Amir Hossein, 2024. "Sustainability inventory management model with warm-up process and shortage," Operations Research Perspectives, Elsevier, vol. 12(C).
    14. Helena Bulińska-Stangrecka & Anna Bagieńska, 2021. "Culture-Based Green Workplace Practices as a Means of Conserving Energy and Other Natural Resources in the Manufacturing Sector," Energies, MDPI, vol. 14(19), pages 1-21, October.
    15. Cagno, Enrico & Accordini, Davide & Thollander, Patrik & Andrei, Mariana & Hasan, A S M Monjurul & Pessina, Sonia & Trianni, Andrea, 2025. "Energy management and industry 4.0: Analysis of the enabling effects of digitalization on the implementation of energy management practices," Applied Energy, Elsevier, vol. 390(C).
    16. Karabağ, Oktay & Bulut, Önder & Toy, Ayhan Özgür & Fadıloğlu, Mehmet Murat, 2024. "An efficient procedure for optimal maintenance intervention in partially observable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Zhang, Xuefeng & Zhang, Yutan & Li, Guo, 2024. "Strategic inventory in semi-conductor supply chains under industrial disruption," International Journal of Production Economics, Elsevier, vol. 272(C).
    18. Didden, Jeroen B.H.C. & Dang, Quang-Vinh & Adan, Ivo J.B.F., 2024. "Enhancing stability and robustness in online machine shop scheduling: A multi-agent system and negotiation-based approach for handling machine downtime in industry 4.0," European Journal of Operational Research, Elsevier, vol. 316(2), pages 569-583.
    19. Mehmet Ali Soytaş & Damla Durak Uşar & Meltem Denizel, 2022. "Estimation of the static corporate sustainability interactions," International Journal of Production Research, Taylor & Francis Journals, vol. 60(4), pages 1245-1264, February.
    20. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6164-:d:1695189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.