IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3799-d1387066.html
   My bibliography  Save this article

Assessing the Potential Climate Impacts and Benefits of Waste Prevention and Management: A Case Study of Sweden

Author

Listed:
  • Jurate Miliute-Plepiene

    (IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden)

  • Jan-Olov Sundqvist

    (IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden)

Abstract

This study employs a life cycle perspective to analyze the carbon footprints of various waste streams, evaluating 52 cases across 26 types of household waste in Sweden, with a focus on waste prevention and management. It demonstrates that while recycling can reduce carbon emissions, prevention could significantly enhance these benefits, with savings ranging from −36.5 to −0.01 kg-CO 2 -eq per kg of waste. Notably, Waste Electrical and Electronic Equipment (WEEE), textiles, tires, residual household, and plastic waste are the top five fractions most amenable to prevention on a per mass basis. Further analysis, considering waste volumes, shows that targeted recycling of materials like WEEE, metals, and paper could account for over 80% of potential carbon savings. However, the majority of potential climate impact is attributed to the energy recovery of unsorted (mixed) waste, contributing to more than 90% of total impacts. Redirecting all mixed waste to recycling could triple carbon savings, but focusing on prevention could potentially increase benefits twenty-sevenfold, particularly for waste like WEEE, food, and textiles. This research provides a valuable tool for identifying key areas in waste management to optimize climate benefits and enhance public awareness. However, it advises using local data for precise planning due to inherent uncertainties.

Suggested Citation

  • Jurate Miliute-Plepiene & Jan-Olov Sundqvist, 2024. "Assessing the Potential Climate Impacts and Benefits of Waste Prevention and Management: A Case Study of Sweden," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3799-:d:1387066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    2. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    3. Muel Kaptein, 2023. "A Paradox of Ethics: Why People in Good Organizations do Bad Things," Journal of Business Ethics, Springer, vol. 184(1), pages 297-316, April.
    4. Vance, Colin & Frondel, Manuel, 2015. "From fuel taxation to efficiency standards: A wrong turn in European climate protection?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113171, Verein für Socialpolitik / German Economic Association.
    5. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    6. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    7. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    8. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
    9. Benedetto, Graziella & Rugani, Benedetto & Vázquez-Rowe, Ian, 2014. "Rebound effects due to economic choices when assessing the environmental sustainability of wine," Food Policy, Elsevier, vol. 49(P1), pages 167-173.
    10. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    11. Rabindra Nepal, Muhammad Indra al Irsyad, and Tooraj Jamasb, 2021. "Sectoral Electricity Demand and Direct Rebound Effects in New Zealand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    13. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    14. Massimo Filippini & Luis Orea, 2014. "Applications of the stochastic frontier approach in Energy Economics," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 35-42.
    15. Charlier, Dorothée & Legendre, Bérangère, 2021. "Fuel poverty in industrialized countries: Definition, measures and policy implications a review," Energy, Elsevier, vol. 236(C).
    16. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 34(2), pages 461-467.
    17. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    18. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    19. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    20. Du, Kerui & Liu, Xueyue & Zhao, Cheng, 2023. "Environmental regulation mitigates energy rebound effect," Energy Economics, Elsevier, vol. 125(C).
    21. Apergis, Nicholas & Chang, Tsangyao & Gupta, Rangan & Ziramba, Emmanuel, 2016. "Hydroelectricity consumption and economic growth nexus: Evidence from a panel of ten largest hydroelectricity consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 318-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3799-:d:1387066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.