IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1810-d1343816.html
   My bibliography  Save this article

Tri-Objective Vehicle Routing Problem to Optimize the Distribution Process of Sustainable Local E-Commerce Platforms

Author

Listed:
  • Francesco Pilati

    (Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy)

  • Riccardo Tronconi

    (Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy)

Abstract

The dramatic growth of online shopping worldwide in the last few years generated negative consequences for local small retailers who do not adopt information technologies. Furthermore, the e-commerce sector is considered a good opportunity to develop sustainable logistic processes. To reach this goal, the proposed paper presents a mathematical model and a metaheuristic algorithm to solve a multi-objective capacitated vehicle routing problem (CVRP) distinguished by economic, green, and ethical objective functions. The proposed algorithm is a multi-objective simulated annealing (MOSA) that is implemented in a software architecture and validated with real-world instances that differ for the product type delivered and the geographic distribution of customers. The main result of each test is a tri-dimensional Pareto front, i.e., a decision-support system for practitioners in selecting the best solution according to their needs. From these fronts, it can be observed that if the economic and environmental performances slightly deteriorate by 1.6% and 4.5%, respectively, the social one improves by 19.4%. Furthermore, the developed MOSA shows that the environmental and social objective functions depend on the product dimensions and the geographic distribution of customers. Regarding the former aspect, this paper reports that, counter-intuitively, the metabolic energy consumption per driver decreases with bigger products because the number of necessary vehicles (and drivers) increases, and, thus, the workload is divided among more employees. Regarding the geographic distribution, this manuscript illustrates that, despite similar traveled distances, highly variable altitudes cause more carbon emissions compared to flat distributions. Finally, this contribution shows that delivering small goods decreases the distance that vehicles travel empty by 59%, with a consequent cost reduction of 16%.

Suggested Citation

  • Francesco Pilati & Riccardo Tronconi, 2024. "Tri-Objective Vehicle Routing Problem to Optimize the Distribution Process of Sustainable Local E-Commerce Platforms," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1810-:d:1343816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halvorsen-Weare, Elin E. & Savelsbergh, Martin W.P., 2016. "The bi-objective mixed capacitated general routing problem with different route balance criteria," European Journal of Operational Research, Elsevier, vol. 251(2), pages 451-465.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    4. Yihong Guan & Yangyang Chu & Mou Lv & Shuyan Li & Hang Li & Shen Dong & Yanbo Su, 2023. "Application of Strength Pareto Evolutionary Algorithm II in Multi-Objective Water Supply Optimization Model Design for Mountainous Complex Terrain," Sustainability, MDPI, vol. 15(15), pages 1-20, August.
    5. P. Matl & R. F. Hartl & T. Vidal, 2018. "Workload Equity in Vehicle Routing Problems: A Survey and Analysis," Transportation Science, INFORMS, vol. 52(2), pages 239-260, March.
    6. Hongwen Han & Luxian Chen & Sitong Fang & Yang Liu, 2023. "The Routing Problem for Electric Truck with Partial Nonlinear Charging and Battery Swapping," Sustainability, MDPI, vol. 15(18), pages 1-29, September.
    7. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    8. Aleksander Banasik & Jacqueline M. Bloemhof-Ruwaard & Argyris Kanellopoulos & G. D. H. Claassen & Jack G. A. J. Vorst, 2018. "Multi-criteria decision making approaches for green supply chains: a review," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 366-396, September.
    9. Costagliola, Maria Antonietta & Costabile, Marianeve & Prati, Maria Vittoria, 2018. "Impact of road grade on real driving emissions from two Euro 5 diesel vehicles," Applied Energy, Elsevier, vol. 231(C), pages 586-593.
    10. Amira Saker & Amr Eltawil & Islam Ali, 2023. "Adaptive Large Neighborhood Search Metaheuristic for the Capacitated Vehicle Routing Problem with Parcel Lockers," Logistics, MDPI, vol. 7(4), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    2. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    3. Hua, Mingzhuang & Chen, Xuewu & Chen, Jingxu & Huang, Di & Cheng, Long, 2022. "Large-scale dockless bike sharing repositioning considering future usage and workload balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    4. Fontaine, Pirmin, 2022. "The vehicle routing problem with load-dependent travel times for cargo bicycles," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1005-1016.
    5. Osman Atilla Yazır & Çağrı Koç & Eda Yücel, 2023. "The multi-period home healthcare routing and scheduling problem with electric vehicles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 853-901, September.
    6. Lehuédé, Fabien & Péton, Olivier & Tricoire, Fabien, 2020. "A lexicographic minimax approach to the vehicle routing problem with route balancing," European Journal of Operational Research, Elsevier, vol. 282(1), pages 129-147.
    7. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    8. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    9. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    10. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    11. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    13. Dilupa Nakandala & Yung Po Tsang & Henry Lau & Carman Ka Man Lee, 2022. "An Industrial Blockchain-Based Multi-Criteria Decision Framework for Global Freight Management in Agricultural Supply Chains," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
    14. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    15. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    16. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    17. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    18. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    19. repec:dar:wpaper:62383 is not listed on IDEAS
    20. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    21. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1810-:d:1343816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.