IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p12091-d1212338.html
   My bibliography  Save this article

Application of Strength Pareto Evolutionary Algorithm II in Multi-Objective Water Supply Optimization Model Design for Mountainous Complex Terrain

Author

Listed:
  • Yihong Guan

    (School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Yangyang Chu

    (School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Mou Lv

    (School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Shuyan Li

    (Zhonglian Northwest Engineering Design and Research Institute Co., Ltd., Xi’an 710076, China)

  • Hang Li

    (School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Shen Dong

    (School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Yanbo Su

    (School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China)

Abstract

Water distribution networks (WDN) model optimization is an important part of smart water systems to achieve optimal strategies. WDN optimization focuses on the nonlinearity of the discharge head loss equation, the availability of discrete properties of pipe sizes, and the conservation of constraints. Multi-objective evolutionary algorithms (MOEAs) have been proposed and successfully applied in the field of WDN design optimization. Previous studies have focused on comparing the optimization effects of algorithms in water distribution networks, ignoring the problems of unbalanced pressure distribution and water hammer at the nodes of the pipe network caused by the complex terrain in mountainous areas. In this paper, a multi-objective water supply optimization model that integrated cost, reliability, and water quality was established for a mountainous WDN in real engineering. The method of traversing the nodes to solve the water age was introduced to find a more scientific and practical water age solution model, with setting the weight function to evaluate the water age of the water supply model comprehensively. Strength Pareto Evolutionary Algorithm II (SPEA-II) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) were adopted to optimize the WDN design model in the mountainous complex terrain. The significance levels of the number of Pareto solutions (NOPS) and running time are 0.029 and 0.001, respectively, indicating that the two algorithms have significant differences. Compared to NSGA-II, SPEA-II has a better convergence rate and running time in multi-objective water supply optimization design. The solution set distribution of SPEA-II is more concentrated than that of NSGA-II, also the numerical value is better. The number of SPEA-II optimization schemes is larger and the scheme is more effective. Among them, the Pareto solution set of SPEA-II can obtain more desirable optimization results on cost, reliability index (RI) and water age. In summary, the study provides valuable information for decision makers in WDN with complex terrain.

Suggested Citation

  • Yihong Guan & Yangyang Chu & Mou Lv & Shuyan Li & Hang Li & Shen Dong & Yanbo Su, 2023. "Application of Strength Pareto Evolutionary Algorithm II in Multi-Objective Water Supply Optimization Model Design for Mountainous Complex Terrain," Sustainability, MDPI, vol. 15(15), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12091-:d:1212338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/12091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/12091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akbar Shirzad & Massoud Tabesh & Behzad Atayikia, 2017. "Multiobjective Optimization of Pressure Dependent Dynamic Design for Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2561-2578, July.
    2. Meisam Shokoohi & Massoud Tabesh & Sara Nazif & Mehdi Dini, 2017. "Water Quality Based Multi-objective Optimal Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 93-108, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Pilati & Riccardo Tronconi, 2024. "Tri-Objective Vehicle Routing Problem to Optimize the Distribution Process of Sustainable Local E-Commerce Platforms," Sustainability, MDPI, vol. 16(5), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro Alves Evangelista & Gustavo Meirelles & Bruno Brentan, 2023. "Computational Model of Water Distribution Network Life Cycle Deterioration," Sustainability, MDPI, vol. 15(19), pages 1-14, October.
    2. Andriy Chaban & Marek Lis & Andrzej Szafraniec, 2022. "Voltage Stabilisation of a Drive System Including a Power Transformer and Asynchronous and Synchronous Motors of Susceptible Motion Transmission," Energies, MDPI, vol. 15(3), pages 1-22, January.
    3. Adrian J. Hickford & Simon P. Blainey & Alejandro Ortega Hortelano & Raghav Pant, 2018. "Resilience engineering: theory and practice in interdependent infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 278-291, September.
    4. Yaser Amiri-Ardakani & Mohammad Najafzadeh, 2021. "Pipe Break Rate Assessment While Considering Physical and Operational Factors: A Methodology based on Global Positioning System and Data-Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3703-3720, September.
    5. Soheila Beygi & Massoud Tabesh & Shuming Liu, 2019. "Multi-Objective Optimization Model for Design and Operation of Water Transmission Systems Using a Power Resilience Index for Assessing Hydraulic Reliability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3433-3447, August.
    6. Mohamed R. Torkomany & Hassan Shokry Hassan & Amin Shoukry & Mohamed Hussein & Chihiro Yoshimura & Mohamed Elkholy, 2023. "Investigation of Optimum Sustainable Designs for Water Distribution Systems from Multiple Economic, Operational, and Health Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    7. Tornyeviadzi, Hoese Michel & Owusu-Ansah, Emmanuel & Mohammed, Hadi & Seidu, Razak, 2022. "A systematic framework for dynamic nodal vulnerability assessment of water distribution networks based on multilayer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Ngandu Balekelayi & Haile Woldesellasse & Solomon Tesfamariam, 2022. "Comparison of the Performance of a Surrogate Based Gaussian Process, NSGA2 and PSO Multi-objective Optimization of the Operation and Fuzzy Structural Reliability of Water Distribution System: Case Stu," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6169-6185, December.
    9. Seyed Farhan Moosavian & Daryoosh Borzuei & Abolfazl Ahmadi, 2022. "Cost Analysis of Water Quality Assessment Using Multi-Criteria Decision-Making Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4843-4862, September.
    10. Sokolov, Dmitry V. & Barakhtenko, Evgeny A., 2020. "Optimization of transmission capacity of energy water pipeline networks with a tree-shaped configuration and multiple sources," Energy, Elsevier, vol. 210(C).
    11. Yuan Huang & Feifei Zheng & Huan-Feng Duan & Qingzhou Zhang, 2020. "Multi-Objective Optimal Design of Water Distribution Networks Accounting for Transient Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1517-1534, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12091-:d:1212338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.