IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1576-d1035030.html
   My bibliography  Save this article

Investigation of Optimum Sustainable Designs for Water Distribution Systems from Multiple Economic, Operational, and Health Perspectives

Author

Listed:
  • Mohamed R. Torkomany

    (Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El Arab City 21934, Alexandria, Egypt
    Irrigation Engineering and Hydraulics Department, Alexandria University, Alexandria 11432, Egypt)

  • Hassan Shokry Hassan

    (Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El Arab City 21934, Alexandria, Egypt
    Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt)

  • Amin Shoukry

    (Computer Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El Arab City 21934, Alexandria, Egypt
    Computer and Systems Engineering Department, Alexandria University, Alexandria 11432, Egypt)

  • Mohamed Hussein

    (Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China
    Civil Engineering Department, Faculty of Engineering, Assiut University, Assiut 71516, Egypt)

  • Chihiro Yoshimura

    (Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan)

  • Mohamed Elkholy

    (Irrigation Engineering and Hydraulics Department, Alexandria University, Alexandria 11432, Egypt)

Abstract

Optimizing the design of water distribution systems often faces difficulties due to continuous variations in water demands, pressure requirements, and disinfectant concentrations. The complexity of this optimization even increases when trying to optimize both the hydraulic and the water quality design models. Most of the previous works in the literature did not investigate the linkage between both models, either by combining them into one general model or by selecting any representative solution to proceed from one model to another. This work introduces an integrated two-step framework to optimize both designs while investigating the reasonable network configuration selection from the hydraulic design view before proceeding to the water quality design. The framework is mainly based on a modified version of the multi-objective particle swarm optimization algorithm. The algorithm’s first step is optimizing the hydraulic design of the network by minimizing the system’s capital cost while maximizing the system’s reliability. The second step targets optimizing the water quality design by minimizing both the total consumed chlorine mass and the accumulated differences between actual and maximum chlorine concentrations for all the network junctions. The framework is applied to Safi Network in Yemen. Three scenarios of the water quality design are proposed based on the selected decision variables. The results show a superior performance of the first scenario, based on optimized 24-h multipliers of a chlorine pattern for a flow-paced booster station, compared to the other scenarios in terms of the diversity of final solutions.

Suggested Citation

  • Mohamed R. Torkomany & Hassan Shokry Hassan & Amin Shoukry & Mohamed Hussein & Chihiro Yoshimura & Mohamed Elkholy, 2023. "Investigation of Optimum Sustainable Designs for Water Distribution Systems from Multiple Economic, Operational, and Health Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1576-:d:1035030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalyanmoy Deb & Nikhil Padhye, 2014. "Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms," Computational Optimization and Applications, Springer, vol. 57(3), pages 761-794, April.
    2. Meisam Shokoohi & Massoud Tabesh & Sara Nazif & Mehdi Dini, 2017. "Water Quality Based Multi-objective Optimal Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 93-108, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro Alves Evangelista & Gustavo Meirelles & Bruno Brentan, 2023. "Computational Model of Water Distribution Network Life Cycle Deterioration," Sustainability, MDPI, vol. 15(19), pages 1-14, October.
    2. Yihong Guan & Yangyang Chu & Mou Lv & Shuyan Li & Hang Li & Shen Dong & Yanbo Su, 2023. "Application of Strength Pareto Evolutionary Algorithm II in Multi-Objective Water Supply Optimization Model Design for Mountainous Complex Terrain," Sustainability, MDPI, vol. 15(15), pages 1-20, August.
    3. Arnaud Flori & Hamouche Oulhadj & Patrick Siarry, 2022. "QUAntum Particle Swarm Optimization: an auto-adaptive PSO for local and global optimization," Computational Optimization and Applications, Springer, vol. 82(2), pages 525-559, June.
    4. Andriy Chaban & Marek Lis & Andrzej Szafraniec, 2022. "Voltage Stabilisation of a Drive System Including a Power Transformer and Asynchronous and Synchronous Motors of Susceptible Motion Transmission," Energies, MDPI, vol. 15(3), pages 1-22, January.
    5. Seyed Farhan Moosavian & Daryoosh Borzuei & Abolfazl Ahmadi, 2022. "Cost Analysis of Water Quality Assessment Using Multi-Criteria Decision-Making Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4843-4862, September.
    6. Sokolov, Dmitry V. & Barakhtenko, Evgeny A., 2020. "Optimization of transmission capacity of energy water pipeline networks with a tree-shaped configuration and multiple sources," Energy, Elsevier, vol. 210(C).
    7. Yin, Xiuxing & Zhao, Xiaowei & Lin, Jin & Karcanias, Aris, 2020. "Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations," Energy, Elsevier, vol. 202(C).
    8. Yuan Huang & Feifei Zheng & Huan-Feng Duan & Qingzhou Zhang, 2020. "Multi-Objective Optimal Design of Water Distribution Networks Accounting for Transient Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1517-1534, March.
    9. Adrian J. Hickford & Simon P. Blainey & Alejandro Ortega Hortelano & Raghav Pant, 2018. "Resilience engineering: theory and practice in interdependent infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 278-291, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1576-:d:1035030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.