IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1293-d1332461.html
   My bibliography  Save this article

Monthly Global Solar Radiation Model Based on Artificial Neural Network, Temperature Data and Geographical and Topographical Parameters: A Case Study in Spain

Author

Listed:
  • Enrique González-Plaza

    (Department of Physics, University of Oviedo, c/Federico García Lorca, nº18, 33007 Oviedo, Spain)

  • David García

    (Department of Energy, University of Oviedo, c/Wifredo Ricart, s/n, 33204 Gijón, Spain)

  • Jesús-Ignacio Prieto

    (Department of Physics, University of Oviedo, c/Federico García Lorca, nº18, 33007 Oviedo, Spain)

Abstract

Solar energy plays an essential role in the current energy context to achieve sustainable development while supplying energy needs, creating jobs, and protecting the environment. Many solar radiation models have provided valid estimates at many different locations, using appropriate input variables for specific climatic conditions, but predictions are less accurate on a regional scale. Since radiometric weather stations are relatively dispersed, even in the most developed countries, it is interesting to develop indirect models based on measurements that are common in secondary network stations. This paper develops a monthly global solar radiation model based on a simple neural network structure, using temperature, geographical, and topographical data from 105 meteorological stations, representative of the whole of peninsular Spain. A hierarchical clustering procedure was employed to select the data used to train and validate the model. To avoid functional dependencies between parameters and variables, which hinder the generality of the model, all input and output variables are dimensionless. The estimates fit the 1260 monthly data with RRMSE values of about 6%, which improves results obtained previously, using regression models, and proves that simplicity is compatible with the generality and accuracy of a model, even in large regions with very varied characteristics.

Suggested Citation

  • Enrique González-Plaza & David García & Jesús-Ignacio Prieto, 2024. "Monthly Global Solar Radiation Model Based on Artificial Neural Network, Temperature Data and Geographical and Topographical Parameters: A Case Study in Spain," Sustainability, MDPI, vol. 16(3), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1293-:d:1332461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amri, Fethi, 2017. "Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 527-534.
    2. Younes Noorollahi & Mohammad Mohammadi & Hossein Yousefi & Amjad Anvari-Moghaddam, 2020. "A Spatial-Based Integration Model for Regional Scale Solar Energy Technical Potential," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    2. Liton Chandra Voumik & Md. Azharul Islam & Abidur Rahaman & Md. Maznur Rahman, 2022. "Emissions of carbon dioxide from electricity production in ASEAN countries: GMM and quantile regression analysis," SN Business & Economics, Springer, vol. 2(9), pages 1-20, September.
    3. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    4. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    5. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    6. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    7. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    9. Rath, Badri Narayan & Akram, Vaseem & Bal, Debi Prasad & Mahalik, Mantu Kumar, 2019. "Do fossil fuel and renewable energy consumption affect total factor productivity growth? Evidence from cross-country data with policy insights," Energy Policy, Elsevier, vol. 127(C), pages 186-199.
    10. Marius-Corneliu Marinaș & Marin Dinu & Aura-Gabriela Socol & Cristian Socol, 2018. "Renewable energy consumption and economic growth. Causality relationship in Central and Eastern European countries," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-29, October.
    11. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States," Energies, MDPI, vol. 15(2), pages 1-16, January.
    12. Vo, Duc Hong & Vo, Anh The & Ho, Chi Minh & Nguyen, Ha Minh, 2020. "The role of renewable energy, alternative and nuclear energy in mitigating carbon emissions in the CPTPP countries," Renewable Energy, Elsevier, vol. 161(C), pages 278-292.
    13. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    14. Dahiru Alhaji-Bala Birnintsaba & Hüseyin Ozdeser & Andisheh Saliminezhad, 2021. "Impact Analysis on the Effective Synergy Between Climate Change, Ecological Degradation and Energy Consumption on Economic Growth in Nigeria," SAGE Open, , vol. 11(4), pages 21582440211, December.
    15. Amri, Fethi & Zaied, Younes Ben & Lahouel, Bechir Ben, 2019. "ICT, total factor productivity, and carbon dioxide emissions in Tunisia," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 212-217.
    16. Benkraiem, Ramzi & Lahiani, Amine & Miloudi, Anthony & Shahbaz, Muhammad, 2019. "The asymmetric role of shadow economy in the energy-growth nexus in Bolivia," Energy Policy, Elsevier, vol. 125(C), pages 405-417.
    17. Napolitano, Oreste & Foresti, Pasquale & Kounetas, Konstantinos & Spagnolo, Nicola, 2023. "The impact of energy, renewable and CO2 emissions efficiency on countries’ productivity," Energy Economics, Elsevier, vol. 125(C).
    18. Mohsen Khezri & Mohammad Sharif Karimi & Jamal Mamkhezri & Reza Ghazal & Larry Blank, 2022. "Assessing the Impact of Selected Determinants on Renewable Energy Sources in the Electricity Mix: The Case of ASEAN Countries," Energies, MDPI, vol. 15(13), pages 1-15, June.
    19. Ewa Chomać-Pierzecka & Hubert Gąsiński & Joanna Rogozińska-Mitrut & Dariusz Soboń & Sebastian Zupok, 2023. "Review of Selected Aspects of Wind Energy Market Development in Poland and Lithuania in the Face of Current Challenges," Energies, MDPI, vol. 16(1), pages 1-17, January.
    20. Khan, Anwar & Chenggang, Yang & Hussain, Jamal & Bano, Sadia & Nawaz, AAmir, 2020. "Natural resources, tourism development, and energy-growth-CO2 emission nexus: A simultaneity modeling analysis of BRI countries," Resources Policy, Elsevier, vol. 68(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1293-:d:1332461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.