IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p3061-3069.html
   My bibliography  Save this article

Siting criteria and feasibility analysis for PV power generation projects using road facilities

Author

Listed:
  • Kim, Soullam
  • Lee, Yuhwa
  • Moon, Hak-Ryong

Abstract

PV power plants have been built by public or private funds along some sections of the Korea Expressways to generate electricity since the early 2010s, but since the national highways have not been allowed to analyze potentials of the solar power generation based on by law or national standards, we aim at setting up new siting criteria to support decision makers to implement solar energy power generation projects on the national highways. This paper presents the formulation of siting criteria for photovoltaic (PV) power generation projects on the national highways in South Korea, which generate and use renewable energy for purposes such as traffic-facility operation. The feasibility of using candidate sites of the potential projects, selected according to the formulated criteria, in future solar highway projects is determined. An investigation of a database of spatial information of unused-highways was conducted. These data were set as the basic inputs for better-selecting with the project site criteria. The final formulated criteria were used to select two candidate sites and simulations of the topographic conditions, solar irradiance, and shade were performed to estimate the power-generation capacities of the candidate sites. In a feasibility analysis, each candidate site demonstrated an electricity-generation capacity more than 1MW. These results can help in establishing PV power generation projects in South Korea using the national highways with a total length of about 140,000km as the objective spatial data in the project-planning stage. Furthermore, it promotes the expansion of renewable energy supply sources in South Korea and elsewhere in the world.

Suggested Citation

  • Kim, Soullam & Lee, Yuhwa & Moon, Hak-Ryong, 2018. "Siting criteria and feasibility analysis for PV power generation projects using road facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3061-3069.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:3061-3069
    DOI: 10.1016/j.rser.2017.08.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117312091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.08.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arán Carrión, J. & Espín Estrella, A. & Aznar Dols, F. & Zamorano Toro, M. & Rodríguez, M. & Ramos Ridao, A., 2008. "Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2358-2380, December.
    2. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    2. Zhenqiang Han & Weidong Zhou & Aimin Sha & Liqun Hu & Runjie Wei, 2023. "Assessing the Photovoltaic Power Generation Potential of Highway Slopes," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    3. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
    4. Wang, Hsiao-Wen & Dodd, Adrienne & Ko, Yekang, 2022. "Resolving the conflict of greens: A GIS-based and participatory least-conflict siting framework for solar energy development in southwest Taiwan," Renewable Energy, Elsevier, vol. 197(C), pages 879-892.
    5. Li Ji & Zhenwei Yu & Jing Ma & Limin Jia & Fuwei Ning, 2020. "The Potential of Photovoltaics to Power the Railway System in China," Energies, MDPI, vol. 13(15), pages 1-17, July.
    6. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Wu, Wangjie & Wang, Teng, 2023. "Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect," Applied Energy, Elsevier, vol. 331(C).
    7. Mengjin Hu & Xiaoyang Song & Zhongxu Bao & Zhao Liu & Mengju Wei & Yaohuan Huang, 2022. "Evaluation of the Economic Potential of Photovoltaic Power Generation in Road Spaces," Energies, MDPI, vol. 15(17), pages 1-16, September.
    8. Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
    9. Mirosława Szewczyk & Anna Szeliga-Duchnowska, 2022. "Make Hay While the Sun Shines: Beneficiaries of Renewable Energy Promotion," Energies, MDPI, vol. 15(9), pages 1-15, May.
    10. Jung, Jaehoon & Han, SangUk & Kim, Byungil, 2019. "Digital numerical map-oriented estimation of solar energy potential for site selection of photovoltaic solar panels on national highway slopes," Applied Energy, Elsevier, vol. 242(C), pages 57-68.
    11. Yiqing Dai & Yan Yin & Yundi Lu, 2021. "Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    2. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    3. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    4. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
    5. Aly, Ahmed & Jensen, Steen Solvang & Pedersen, Anders Branth, 2017. "Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis," Renewable Energy, Elsevier, vol. 113(C), pages 159-175.
    6. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    7. Ghasemi, Golara & Noorollahi, Younes & Alavi, Hamed & Marzband, Mousa & Shahbazi, Mahmoud, 2019. "Theoretical and technical potential evaluation of solar power generation in Iran," Renewable Energy, Elsevier, vol. 138(C), pages 1250-1261.
    8. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    9. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    10. Palmer, Diane & Gottschalg, Ralph & Betts, Tom, 2019. "The future scope of large-scale solar in the UK: Site suitability and target analysis," Renewable Energy, Elsevier, vol. 133(C), pages 1136-1146.
    11. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    12. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    13. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    14. Guo, Qiaozhen & He, Qiao-Chu & Chen, Ying-Ju & Huang, Wei, 2021. "Poverty mitigation via solar panel adoption: Smart contracts and targeted subsidy design," Omega, Elsevier, vol. 102(C).
    15. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    16. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    17. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    18. Ćetković, Stefan & Buzogány, Aron, 2020. "Between markets, politics and path-dependence: Explaining the growth of solar and wind power in six Central and Eastern European countries," Energy Policy, Elsevier, vol. 139(C).
    19. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    20. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:3061-3069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.