IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6686-d1450044.html
   My bibliography  Save this article

Water and Wastewater Management in Production Processes of PGE Energia Ciepła SA Branch 1 in Krakow in Light of Company Modernization

Author

Listed:
  • Zbigniew Kowalczyk

    (Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, ul. Balicka 116B, 30-149 Kraków, Poland)

  • Wojciech Winiarski

    (PGE Energia Ciepła S.A Department 1 in Krakow, 31-587 Kraków, Poland)

Abstract

Electricity production requires a very high water consumption. One way to reduce water demand in power plants might be effective wastewater recycling within the power plant, which can lead to almost zero wastewater discharge. The study aims to characterize the functioning of the water and wastewater management system before and after the modernization of a wastewater treatment installation owned by an electricity and heat producer using biomass and other solid fuels. The scope of work covered one of the largest energy companies in Poland: PGE Energia Ciepła SA Branch 1 in Krakow. Water management and the effectiveness of wastewater treatment installation modernization were assessed in terms of the BAT (Best Available Techniques) conclusions. Particular attention was paid to the analysis of changes in the quality parameters of wastewater after the modernization of the wet flue gas desulfurization installation. The research results prove that the modernization of the company’s water and wastewater system significantly reduced the emission of harmful substances into the environment and water consumption. After modernization, an effective reduction in the content of heavy metals and other pollutants in the wastewater was observed. A decrease in the content of cadmium was observed by 99%, nickel—96%, mercury—95%, and copper—83%.

Suggested Citation

  • Zbigniew Kowalczyk & Wojciech Winiarski, 2024. "Water and Wastewater Management in Production Processes of PGE Energia Ciepła SA Branch 1 in Krakow in Light of Company Modernization," Sustainability, MDPI, vol. 16(15), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6686-:d:1450044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    2. DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
    3. Elattar, Ehab E., 2019. "Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithm," Energy, Elsevier, vol. 171(C), pages 256-269.
    4. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    2. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    3. Wang, Chunyan & Li, Yaqing & Liu, Yi, 2018. "Investigation of water-energy-emission nexus of air pollution control of the coal-fired power industry: A case study of Beijing-Tianjin-Hebei region, China," Energy Policy, Elsevier, vol. 115(C), pages 291-301.
    4. Tidwell, Vincent C. & Gunda, Thushara & Gayoso, Natalie, 2021. "Plant-level characteristics could aid in the assessment of water-related threats to the electric power sector," Applied Energy, Elsevier, vol. 282(PA).
    5. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    6. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    7. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    8. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    9. Monika Bryła & Iwona Zdralewicz & Iwona Lejcuś & Katarzyna Kraj & Grzegorz Dumieński & Tamara Tokarczyk & Tomasz Walczykiewicz, 2025. "Integrated Water Resources Management for Implementing Sustainable Energy Development—Challenges and Perspectives in Poland," Sustainability, MDPI, vol. 17(3), pages 1-30, January.
    10. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    11. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    12. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    13. Jiahai Yuan & Qi Lei & Minpeng Xiong & Jingsheng Guo & Changhong Zhao, 2014. "Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China," Sustainability, MDPI, vol. 6(10), pages 1-26, October.
    14. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    15. Diego Sesma-Martín, 2020. "Cooling Water: A Source of Conflict in Spain, 1970–1980," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    16. Yousef Haseli, 2021. "Interpretation of Entropy Calculations in Energy Conversion Systems," Energies, MDPI, vol. 14(21), pages 1-14, October.
    17. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    18. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    19. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    20. Obringer, R. & Kumar, R. & Nateghi, R., 2019. "Analyzing the climate sensitivity of the coupled water-electricity demand nexus in the Midwestern United States," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6686-:d:1450044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.