IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p5233-d1418463.html
   My bibliography  Save this article

Green Building Performance Analysis and Energy-Saving Design Strategies in Dalian, China

Author

Listed:
  • Qiyuan Wang

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 802-8577, Japan)

  • Weijun Gao

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 802-8577, Japan
    Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266033, China)

  • Yuan Su

    (School of Architecture & Fine Art, Dalian University of Technology, Dalian 116024, China
    Key Laboratory of Urban Green Health Design and Technology of Liaoning Province, Dalian 116024, China)

  • Haoyuan Cheng

    (Jiangsu Engineering Corporation Limited of Power China, Nanjing 210024, China)

Abstract

In the face of global climate change, there is a pressing and significant need to find low-carbon solutions for China’s construction industry. This research focuses on green public buildings in Dalian, a municipality situated in northern China. We investigated energy-saving design applications based on actual measured data. The results show that the common design aspects in the eco-friendly design of green public buildings encompass the conservation of building-derived energy, water use in buildings, and indoor environmental quality technologies. Optimized design strategies were proposed, focusing on three design elements—building orientation, greening, and shading—that are less considered in the case of buildings. It was found that the optimal orientation of the building is 35° southwest, and two vertical greening methods and three shading design methods were proposed. In addition, the incremental costs of green public buildings with different energy-saving technologies were discussed. This study aims to provide operational performance and feasible emission-reduction strategies for the construction industry in China and worldwide to meet the challenges under the dual carbon target.

Suggested Citation

  • Qiyuan Wang & Weijun Gao & Yuan Su & Haoyuan Cheng, 2024. "Green Building Performance Analysis and Energy-Saving Design Strategies in Dalian, China," Sustainability, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5233-:d:1418463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/5233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/5233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    2. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    2. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    3. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    4. Feng, Jiayu & Gao, Jintong & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "A mass-coupled hybrid absorption-compression heat pump with output temperature of 200 °C," Energy, Elsevier, vol. 312(C).
    5. Huangling Gu & Yan Liu & Hao Xia & Zilong Li & Liyuan Huang & Yanjia Zeng, 2023. "Temporal and Spatial Differences in CO 2 Equivalent Emissions and Carbon Compensation Caused by Land Use Changes and Industrial Development in Hunan Province," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    6. Kuang, Yunming & Lin, Boqiang, 2021. "Performance of tiered pricing policy for residential natural gas in China: Does the income effect matter?," Applied Energy, Elsevier, vol. 304(C).
    7. Wu, Guoyong & Gao, Yue & Feng, Yanchao, 2023. "Assessing the environmental effects of the supporting policies for mineral resource-exhausted cities in China," Resources Policy, Elsevier, vol. 85(PB).
    8. Yu, Xiang, 2023. "An assessment of the green development efficiency of industrial parks in China: Based on non-desired output and non-radial DEA model," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 81-88.
    9. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Lv, Furong & Tang, Haiping, 2025. "Assessing the impact of climate change on the optimal solar–wind hybrid power generation potential in China: A focus on stability and complementarity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    11. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Yan, Ran & Zhou, Nan & Ma, Minda & Mao, Chao, 2025. "India's residential space cooling transition: Decarbonization ambitions since the turn of millennium," Applied Energy, Elsevier, vol. 391(C).
    13. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    14. Farm, Mooi Yen & Vafaei-Zadeh, Ali & Hanifah, Haniruzila & Nikbin, Davoud, 2024. "The role of value, belief and norm in shaping intentions to use residential rooftop solar for environment sustainability," Energy Policy, Elsevier, vol. 194(C).
    15. Ren, Junzhi & Zeng, Yuan & Qin, Chao & Li, Bao & Wang, Ziqiang & Yuan, Quan & Zhai, Hefeng & Li, Peng, 2024. "Characterization and application of flexible operation region of virtual power plant," Applied Energy, Elsevier, vol. 371(C).
    16. Yue Han & Xiaosan Ge, 2023. "Spatial–Temporal Characteristics and Influencing Factors on Carbon Emissions from Land Use in Suzhou, the World’s Largest Industrial City in China," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    17. Changwei Yuan & Jinrui Zhu & Shuai Zhang & Jiannan Zhao & Shibo Zhu, 2024. "Analysis of the Spatial Correlation Network and Driving Mechanism of China’s Transportation Carbon Emission Intensity," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
    18. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    19. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    20. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5233-:d:1418463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.