IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p219-d1307819.html
   My bibliography  Save this article

Temporal and Spatial Changes of Agriculture Green Development in Beijing’s Ecological Conservation Developing Areas from 2006 to 2016

Author

Listed:
  • Hong Li

    (Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Weiwei Zhang

    (Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Xiao Xiao

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Fei Lun

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Yifu Sun

    (College of Arts and Science, New York University, 383 Lafayette Street, New York, NY 10003, USA)

  • Na Sun

    (Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

Abstract

As an irreplaceable ecological barrier, an ecological conservation developing area (ECDA) is vital for the integrated construction of urban and rural areas and the optimization and adjustment of industrial structures. However, few empirical studies have been conducted on the spatiotemporal variations of agricultural green development (AGD) in the ECDAs of large cities. Based on the green agricultural traits of Beijing and the accessible data, we evaluated the AGD and analyzed its spatial and temporal heterogeneity in Beijing’s ECDAs by constructing a framework with 13 indicators. The results stated that energy consumption is a vital factor in green agriculture production and that the agricultural output value per unit of arable land area is the key to green agricultural revenue. From 2006 to 2016, the AGD index of the ECDA had an increasing trend, until 2012 when it followed a decreasing tendency. The AGD index of the northern region was higher than in the southern ECDA. The obstacle degree model was used to verify the AGD limiting factors, where poor infrastructure, slow agritourism, low labor productivity, and low resource use efficiency varied by districts in the ECDA. Given these findings, our study is conducive to AGD evaluation at the district (county) level for the ECDAs of large cities and provides important policy implications.

Suggested Citation

  • Hong Li & Weiwei Zhang & Xiao Xiao & Fei Lun & Yifu Sun & Na Sun, 2023. "Temporal and Spatial Changes of Agriculture Green Development in Beijing’s Ecological Conservation Developing Areas from 2006 to 2016," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:219-:d:1307819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weinzettel, Jan & Wood, Richard, 2018. "Environmental Footprints of Agriculture Embodied in International Trade: Sensitivity of Harvested Area Footprint of Chinese Exports," Ecological Economics, Elsevier, vol. 145(C), pages 323-330.
    2. Pengfei Ge & Tan Liu & Xiaoxu Wu & Xiulu Huang, 2023. "Heterogenous Urbanization and Agricultural Green Development Efficiency: Evidence from China," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    3. Bell, Andrew & Parkhurst, Gregory & Droppelmann, Klaus & Benton, Tim G., 2016. "Scaling up pro-environmental agricultural practice using agglomeration payments: Proof of concept from an agent-based model," Ecological Economics, Elsevier, vol. 126(C), pages 32-41.
    4. Min Wan & Haibo Kuang & Yanbo Yang & Bi He & Sue Zhao & Ying Wang & Jingyi Huo, 2023. "Evaluation of Agricultural Green Development Based on Gini Coefficient and Hesitation Fuzzy Multi-Attribute Decision-Making: The Case of China," Agriculture, MDPI, vol. 13(3), pages 1-15, March.
    5. Nihal Ahmed & Zeeshan Hamid & Farhan Mahboob & Khalil Ur Rehman & Muhammad Sibt e Ali & Piotr Senkus & Aneta Wysokińska-Senkus & Paweł Siemiński & Adam Skrzypek, 2022. "Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach," Agriculture, MDPI, vol. 12(9), pages 1-17, August.
    6. Cracolici, Maria Francesca & Cuffaro, Miranda & Lacagnina, Valerio, 2018. "Assessment of Sustainable Well-being in the Italian Regions: An Activity Analysis Model," Ecological Economics, Elsevier, vol. 143(C), pages 105-110.
    7. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    8. Konstantinos Petridis & Georgios Drogalas & Eleni Zografidou, 2021. "Internal auditor selection using a TOPSIS/non-linear programming model," Annals of Operations Research, Springer, vol. 296(1), pages 513-539, January.
    9. Shulong Li & Zhizhang Wang, 2023. "The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China," Agriculture, MDPI, vol. 13(4), pages 1-21, March.
    10. Harvey James, 2006. "Sustainable agriculture and free market economics: Finding common ground in Adam Smith," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 23(4), pages 427-438, December.
    11. Eun-Kyung Lee & Dianne Cook & Sigbert Klinke & Thomas Lumley, 2005. "Projection Pursuit for Exploratory Supervised Classification," SFB 649 Discussion Papers SFB649DP2005-026, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    12. Liu, Jiaxin & Li, Yan & Zheng, Yiming & Tong, Sijie & Zhang, Xuechen & Zhao, Ying & Zheng, Wei & Zhai, Bingnian & Wang, Zhaohui & Zhang, Xucheng & Li, Ziyan & Zamanian, Kazem, 2022. "The spatial and temporal distribution of nitrogen flow in the agricultural system and green development assessment of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Judith Janker, 2020. "Moral conflicts, premises and the social dimension of agricultural sustainability," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(1), pages 97-111, March.
    14. Erling Holden & Kristin Linnerud & David Banister, 2017. "The Imperatives of Sustainable Development," Sustainable Development, John Wiley & Sons, Ltd., vol. 25(3), pages 213-226, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    2. Judith Janker, 2020. "Moral conflicts, premises and the social dimension of agricultural sustainability," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(1), pages 97-111, March.
    3. Changhong Chen & Huijie Zhang, 2023. "Evaluation of Green Development Level of Mianyang Agriculture, Based on the Entropy Weight Method," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    4. Yongna Zou & Qingping Cheng & Hanyu Jin & Xuefu Pu, 2023. "Evaluation of Green Agricultural Development and Its Influencing Factors under the Framework of Sustainable Development Goals: Case Study of Lincang City, an Underdeveloped Mountainous Region of China," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    5. Xingling Jiang & Yong Sun & Mou Shen & Lixia Tang, 2024. "How Does Developing Green Agriculture Affect Poverty? Evidence from China’s Prefecture-Level Cities," Agriculture, MDPI, vol. 14(3), pages 1-16, March.
    6. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    7. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    8. Long Qian & Yunjie Zhou & Ying Sun, 2023. "Regional Differences, Distribution Dynamics, and Convergence of the Green Total Factor Productivity of China’s Cities under the Dual Carbon Targets," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    9. François Bareille & Matteo Zavalloni & Davide Viaggi, 2023. "Agglomeration bonus and endogenous group formation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 76-98, January.
    10. Joanna Wiśniewska & Joanna Markiewicz, 2021. "The Impact of Poland’s Energy Transition on the Strategies of Fossil Fuel Sector Companies—The Example of PKN Orlen Group," Energies, MDPI, vol. 14(22), pages 1-17, November.
    11. Kolcava, Dennis & Nguyen, Quynh & Bernauer, Thomas, 2019. "Does trade liberalization lead to environmental burden shifting in the global economy?," Ecological Economics, Elsevier, vol. 163(C), pages 98-112.
    12. Dan Yuan & Runhan Wu & Dong Li & Lei Zhu & Yaguang Pan, 2023. "Spatial Patterns Characteristics and Influencing Factors of Cultural Resources in the Yellow River National Cultural Park, China," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    13. Eleftherios Thalassinos & Marta Kadłubek & Le Minh Thong & Tran Van Hiep & Erginbay Ugurlu, 2022. "Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries," Resources, MDPI, vol. 11(5), pages 1-22, April.
    14. Tsai, Pei-Hsuan & Kao, Ya-Ling & Kuo, Szu-Yu, 2023. "Exploring the critical factors influencing the outlying island talent recruitment and selection evaluation model: Empirical evidence from Penghu, Taiwan," Evaluation and Program Planning, Elsevier, vol. 99(C).
    15. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    16. Svatava Janoušková & Tomáš Hák & Bedřich Moldan, 2018. "Global SDGs Assessments: Helping or Confusing Indicators?," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    17. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    18. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    19. Yuan Tian & Xiuyi Shi, 2024. "Analysis of Dynamic Evolution and Driving Factors of Low-Carbon Utilization Efficiency of Cultivated Land in China," Agriculture, MDPI, vol. 14(4), pages 1-26, March.
    20. Fazal Ur Rehman & Basheer M. Al-Ghazali & Adel Ghaleb Haddad & Ehab Abdullatif Qahwash & M. Sadiq Sohail, 2023. "Exploring the Reverse Relationship between Circular Economy Innovation and Digital Sustainability—The Dual Mediation of Government Incentives," Sustainability, MDPI, vol. 15(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:219-:d:1307819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.