IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6748-d1125324.html
   My bibliography  Save this article

Exploring the Factors That Promote Sustainable Growth in Regional Sales of New Energy Vehicles: An Empirical Study of China

Author

Listed:
  • Liwen Shi

    (Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, Tianjin University, Tianjin 300072, China
    Department of Mechanical Engineering, Tianjin Ren’ai College, Tianjin 301636, China)

  • Zhonglin Fu

    (Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, Tianjin University, Tianjin 300072, China)

  • Wei Guo

    (Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, Tianjin University, Tianjin 300072, China
    Department of Mechanical Engineering, Tianjin Ren’ai College, Tianjin 301636, China)

  • Jing Zhang

    (Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, Tianjin University, Tianjin 300072, China
    Department of Mechanical Engineering, Tianjin Ren’ai College, Tianjin 301636, China)

  • Jiang Sun

    (Department of Mechanical Engineering, Tianjin Ren’ai College, Tianjin 301636, China)

Abstract

In recent years, China has been at the forefront of the world in the development of new energy vehicles (NEVs). However, national financial subsidies for NEVs will be withdrawn at an accelerated pace with the marketization process. Regional policies have become key to compensating for this withdrawal; these policies can renew the development of NEVs. Therefore, this paper explores the endogenous power of NEVs in blooming from the urban level in China. We used the multiple linear regression method to examine the influence of market and policy and found that the most effective way to promote sales growth of NEVs is to combine both factors. In terms of the market, higher diversity and coverage will make regional competition fair and reasonable. In terms of policy, road priority policy is the main factor to promote sales growth, especially in the cities with license restrictions. Although the regional financial subsidy has declined, its role in increasing sales still exists. Fee relief has the weakest impact on sales and there is still much room for improvement. The findings of this paper provide a foundation for regional governments to develop better decision making strategies for promoting NEVs.

Suggested Citation

  • Liwen Shi & Zhonglin Fu & Wei Guo & Jing Zhang & Jiang Sun, 2023. "Exploring the Factors That Promote Sustainable Growth in Regional Sales of New Energy Vehicles: An Empirical Study of China," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6748-:d:1125324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6748/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6748/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    2. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    3. Chen, Xiao & Wu, Tian & Zheng, Rui & Guo, Xiaoxian, 2018. "How vehicle market is segmented and influenced by subsidy policy: A theoretical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 776-782.
    4. Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2023. "Evolutionary game analysis of the impact of dynamic dual credit policy on new energy vehicles after subsidy cancellation," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    5. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    6. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    7. Maher AbuBaker, 2019. "Data Mining Applications in Understanding Electricity Consumers’ Behavior: A Case Study of Tulkarm District, Palestine," Energies, MDPI, vol. 12(22), pages 1-29, November.
    8. Zhang, Hao & Cai, Guixin, 2020. "Subsidy strategy on new-energy vehicle based on incomplete information: A Case in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    9. Wang, Lei & Fu, Zhong-Lin & Guo, Wei & Liang, Ruo-Yu & Shao, Hong-Yu, 2020. "What influences sales market of new energy vehicles in China? Empirical study based on survey of consumers’ purchase reasons," Energy Policy, Elsevier, vol. 142(C).
    10. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    2. Di Wang & Yuman Li, 2022. "Measuring the Policy Effectiveness of China’s New-Energy Vehicle Industry and Its Differential Impact on Supply and Demand Markets," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    3. Danhua Ouyang & Xunmin Ou & Qian Zhang & Changgui Dong, 2020. "Factors influencing purchase of electric vehicles in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 413-440, March.
    4. Wu, Zezhou & He, Qiufeng & Li, Jiarun & Bi, Guoqiang & Antwi-Afari, Maxwell Fordjour, 2023. "Public attitudes and sentiments towards new energy vehicles in China: A text mining approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Liu, Bingchun & Song, Chengyuan & Wang, Qingshan & Zhang, Xinming & Chen, Jiali, 2022. "Research on regional differences of China's new energy vehicles promotion policies: A perspective of sales volume forecasting," Energy, Elsevier, vol. 248(C).
    6. Mo Chen & Rudy X. J. Liu & Chaochao Liu, 2021. "How to Improve the Market Penetration of New Energy Vehicles in China: An Agent-Based Model with a Three-Level Variables Structure," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    7. Xian, Yujiao & Wang, Qian & Fan, Wenrong & Da, Yabin & Fan, Jing-Li, 2022. "The impact of different incentive policies on new energy vehicle demand in China's gigantic cities," Energy Policy, Elsevier, vol. 168(C).
    8. Ji, Qing & Wang, Chunan & Fan, Ying, 2022. "Environmental and welfare effects of vehicle purchase tax: Evidence from China," Energy Economics, Elsevier, vol. 115(C).
    9. Song, Yanqiu & Shangguan, Lingzhi & Li, Guijun, 2021. "Simulation analysis of flexible concession period contracts in electric vehicle charging infrastructure public-private-partnership (EVCI-PPP) projects based on time-of-use (TOU) charging price strateg," Energy, Elsevier, vol. 228(C).
    10. Zhu, Xiaoxi & Chiong, Raymond & Wang, Miaomiao & Liu, Kai & Ren, Minglun, 2021. "Is carbon regulation better than cash subsidy? The case of new energy vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 170-192.
    11. Austmann, Leonhard M., 2021. "Drivers of the electric vehicle market: A systematic literature review of empirical studies," Finance Research Letters, Elsevier, vol. 41(C).
    12. Deborah F Coldwell & Karl L Evans, 2017. "Contrasting effects of visiting urban green-space and the countryside on biodiversity knowledge and conservation support," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-18, March.
    13. Jihyo Kim & Suhyeon Nam, 2021. "Do Household Time, Risk, and Social Preferences Affect Home Energy Retrofit Decisions in Korea?," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    14. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    15. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    16. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    17. Nolan Ritter & Julia Anna Bingler, 2021. "Do homo sapiens know their prices? Insights on dysfunctional price mechanisms from a large field experiment," CER-ETH Economics working paper series 21/348, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    18. Wang, Ning & Shang, Kai & Duan, Yan & Qin, Dandan, 2023. "Carbon quota allocation modeling framework in the automotive industry based on repeated game theory: A case study of ten Chinese automotive enterprises," Energy, Elsevier, vol. 279(C).
    19. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6748-:d:1125324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.