IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6280-d1117104.html
   My bibliography  Save this article

Flat Roofs Renovation Planning on Public Buildings Using Fuzzy Multi-Criteria Analysis

Author

Listed:
  • Katarina Rogulj

    (Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia)

  • Nikša Jajac

    (Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia)

  • Katja Batinić

    (Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia)

Abstract

Renovation of flat roofs typically involves repairing or replacing the existing roof to improve its performance and extend its lifespan. The renovation process may include a range of tasks depending on the condition of the roof, such as repairing leaks, replacing damaged or deteriorated materials, adding insulation, or upgrading drainage systems. This research aim was to establish the priority of renovation of flat roofs of the public building based on the principles of multi-criteria analysis and fuzzy set theory, using the multi-criteria method PROMETHEE II in fuzzy logic form (F-PROMETHEE II). The proposed approach is adequate due to its ability to transform the uncertain and vague information received from an expert into a fuzzy number. This way, the objective outcome can be obtained, the criteria conflict removed and the alternatives ranking and mutual comparison enabled. It was necessary to analyze the existing literature, the flat roofs of a public building in terms of their current condition, and define the main goals and criteria for the roof renovation project. Based on the defined goals and criteria, the roofs are evaluated and ranked according to the priority for renovation. The planning process of renovation of flat roofs was carried out specifically on the building of the Faculty of Civil Engineering, Architecture and Geodesy in Split.

Suggested Citation

  • Katarina Rogulj & Nikša Jajac & Katja Batinić, 2023. "Flat Roofs Renovation Planning on Public Buildings Using Fuzzy Multi-Criteria Analysis," Sustainability, MDPI, vol. 15(7), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6280-:d:1117104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goumas, M. & Lygerou, V., 2000. "An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects," European Journal of Operational Research, Elsevier, vol. 123(3), pages 606-613, June.
    2. Majid Roodposhti & Saeed Rahimi & Mansour Beglou, 2014. "PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 77-95, August.
    3. Vijay Manikrao Athawale & Prasenjit Chatterjee & Shankar Chakraborty, 2012. "Decision making for facility location selection using PROMETHEE II method," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 11(1/2), pages 16-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaei-Malek, Mohammad & Torabi, S. Ali & Tavakkoli-Moghaddam, Reza, 2019. "Prioritizing disaster-prone areas for large-scale earthquakes' preparedness: Methodology and application," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 9-25.
    2. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    3. S. Roseline & V. Paramasivam & R. Anandhakrishnan & P. R. Lakshminarayanan, 2019. "Numerical evaluation of zirconium reinforced aluminium matrix composites for sustainable environment," Annals of Operations Research, Springer, vol. 275(2), pages 653-667, April.
    4. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    5. Zohre Hoseinzade & Asal Zavarei & Kourosh Shirani, 2021. "Application of prediction–area plot in the assessment of MCDM methods through VIKOR, PROMETHEE II, and permutation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2489-2507, December.
    6. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    7. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    8. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    9. Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    11. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    12. Haralambopoulos, D.A. & Polatidis, H., 2003. "Renewable energy projects: structuring a multi-criteria group decision-making framework," Renewable Energy, Elsevier, vol. 28(6), pages 961-973.
    13. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    14. Doukas, Haris, 2013. "Modelling of linguistic variables in multicriteria energy policy support," European Journal of Operational Research, Elsevier, vol. 227(2), pages 227-238.
    15. Batur Sir, G. Didem & Çalışkan, Emre, 2019. "Assessment of development regions for financial support allocation with fuzzy decision making: A case of Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 161-169.
    16. Khalid Aljohani, 2023. "Optimizing the Distribution Network of a Bakery Facility: A Reduced Travelled Distance and Food-Waste Minimization Perspective," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    17. G Özerol & E Karasakal, 2008. "Interactive outranking approaches for multicriteria decision-making problems with imprecise information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1253-1268, September.
    18. Kangas, Annika S. & Kangas, Jyrki, 2004. "Probability, possibility and evidence: approaches to consider risk and uncertainty in forestry decision analysis," Forest Policy and Economics, Elsevier, vol. 6(2), pages 169-188, March.
    19. Mahsa Montajabiha, 2016. "An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning," Group Decision and Negotiation, Springer, vol. 25(2), pages 221-244, March.
    20. Madlener, Reinhard & Stagl, Sigrid, 2005. "Sustainability-guided promotion of renewable electricity generation," Ecological Economics, Elsevier, vol. 53(2), pages 147-167, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6280-:d:1117104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.