IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3654-d1070717.html
   My bibliography  Save this article

Optimizing the Distribution Network of a Bakery Facility: A Reduced Travelled Distance and Food-Waste Minimization Perspective

Author

Listed:
  • Khalid Aljohani

    (Department of Industrial Engineering, University of Jeddah, Jeddah 23890, Saudi Arabia)

Abstract

There are many logistics nuances specific to bakery factories, making the design of their distribution network especially complex. In particular, bakery products typically have a shelf life of under a week. To ensure that products are delivered to end-customers with freshness, speed, quality, health, and safety prioritized, the distribution network, facility location, and ordering system must be optimally designed. This study presents a multi-stage framework for a bakery factory comprised of a selection methodology of an optimum facility location, an effective distribution network for delivery operations, and a practical ordering system used by related supply chain actors. The operations function and distribution network are optimized using a multi-criteria decision-making method comprised of the Analytic Hierarchy Process (AHP) to establish optimization criteria and Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) to select the optimal facility location. The optimal distribution network strategy was found using an optimization technique. This framework was applied to a real-life problem for a bakery supply chain in the Western Region, Saudi Arabia. Using a real-life, quantitative dataset and incorporating qualitative feedback from key stakeholders in the supply chain, the developed framework enabled a reduction in overall distribution costs by 14%, decreasing the total travel distance by 16%, and decreasing estimated food waste by 22%. This result was primarily achieved by solving the facility location problem in favor of operating two factories without dedicated storage facilities and implementing the distribution network strategy of direct shipment of products from the bakery to customers.

Suggested Citation

  • Khalid Aljohani, 2023. "Optimizing the Distribution Network of a Bakery Facility: A Reduced Travelled Distance and Food-Waste Minimization Perspective," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3654-:d:1070717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vo Hung Duong & Nguyen Hung Bui, 2018. "A mixed-integer linear formulation for a capacitated facility location problem in supply chain network design," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 33(1), pages 32-54.
    2. Apichat Sopadang & Ruth Banomyong, 2016. "Combining AHP and TOPSIS method for logistics hub selection," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 15(2), pages 134-153.
    3. Martino Luis & Chandra A. Irawan & Arif Imran, 2019. "A two-stage method for the capacitated multi-facility location-allocation problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 35(3), pages 366-377.
    4. Suliman Ali Al-Khateeb & Abid Hussain & Stefan Lange & Mohammad M. Almutari & Felicitas Schneider, 2021. "Battling Food Losses and Waste in Saudi Arabia: Mobilizing Regional Efforts and Blending Indigenous Knowledge to Address Global Food Security Challenges," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    5. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    6. Andrii Galkin & Maria Olkhova & Stanisław Iwan & Kinga Kijewska & Serhii Ostashevskyi & Oleksii Lobashov, 2021. "Planning the Rational Freight Vehicle Fleet Utilization Considering the Season Temperature Factor," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    7. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    8. Hashem Omrani & Fahimeh Ghiasvand Ghiasi, 2017. "Facility location decisions in supply chain design under uncertainty: a robust optimisation approach," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 30(3), pages 391-406.
    9. Badri, Masood A., 1999. "Combining the analytic hierarchy process and goal programming for global facility location-allocation problem," International Journal of Production Economics, Elsevier, vol. 62(3), pages 237-248, September.
    10. Chopra, Sunil, 2003. "Designing the distribution network in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(2), pages 123-140, March.
    11. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    12. Arash Mohamadi & Sadoullah Ebrahimnejad & Reza Tavakkoli-Moghaddam, 2018. "A novel two-stage approach for solving a bi-objective facility layout problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 31(1), pages 49-87.
    13. Validi, Sahar & Bhattacharya, Arijit & Byrne, P.J., 2014. "A case analysis of a sustainable food supply chain distribution system—A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 152(C), pages 71-87.
    14. C.K.M. Lee & Yaqiong Lv & K.K.H. Ng & William Ho & K.L. Choy, 2018. "Design and application of Internet of things-based warehouse management system for smart logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 56(8), pages 2753-2768, April.
    15. Jing Chen & Pengfei Gui & Tao Ding & Sanggyun Na & Yingtang Zhou, 2019. "Optimization of Transportation Routing Problem for Fresh Food by Improved Ant Colony Algorithm Based on Tabu Search," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    16. Yaser Khosravian Ghadikolaei & Kamran Shahanaghi, 2013. "Multi-floor dynamic facility layout: a simulated annealing-based solution," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 16(4), pages 375-389.
    17. Grosse, E. H. & Glock, C. H. & Jaber, M. Y. & Neumann, W. P., 2015. "Incorporating human factors in order picking planning models: framework and research opportunities," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65237, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Ali Azadeh & Maryam Nouri Roozbahani & Mohsen Moghaddam, 2013. "Optimisation of complex and large-sized single-row facility layout problems with a unique hybrid meta-heuristic framework," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 16(1), pages 38-67.
    19. Vijay Manikrao Athawale & Prasenjit Chatterjee & Shankar Chakraborty, 2012. "Decision making for facility location selection using PROMETHEE II method," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 11(1/2), pages 16-30.
    20. Eric H. Grosse & Christoph H. Glock & Mohamad Y. Jaber & W. Patrick Neumann, 2015. "Incorporating human factors in order picking planning models: framework and research opportunities," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 695-717, February.
    21. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    22. Claudia Paciarotti & Maurizio Bevilacqua & Filippo Emanuele Ciarapica & Giovanni Mazzuto & Leonardo Postacchini, 2019. "An efficiency analysis of food distribution system through data envelopment analysis," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 36(4), pages 538-554.
    23. Diansheng Lin & Zhiyong Zhang & Jiaxin Wang & Liu Yang & Yongqiang Shi & Jeffrey Soar, 2019. "Optimizing Urban Distribution Routes for Perishable Foods Considering Carbon Emission Reduction," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    24. Antonella Meneghetti & Chiara Pagnin & Patrizia Simeoni, 2021. "Decarbonizing the Cold Chain: Long-Haul Refrigerated Deliveries with On-Board Photovoltaic Energy Integration," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saverio Ferraro & Alessandra Cantini & Leonardo Leoni & Filippo De Carlo, 2023. "Sustainable Logistics 4.0: A Study on Selecting the Best Technology for Internal Material Handling," Sustainability, MDPI, vol. 15(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahroof, Kamran, 2019. "A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse," International Journal of Information Management, Elsevier, vol. 45(C), pages 176-190.
    2. Yang, Zhongzhen & Yu, Shunan & Notteboom, Theo, 2016. "Airport location in multiple airport regions (MARs): The role of land and airside accessibility," Journal of Transport Geography, Elsevier, vol. 52(C), pages 98-110.
    3. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    4. Loske, Dominic & Klumpp, Matthias & Grosse, Eric H. & Modica, Tiziana & Glock, Christoph H., 2023. "Storage systems’ impact on order picking time: An empirical economic analysis of flow-rack storage systems," International Journal of Production Economics, Elsevier, vol. 261(C).
    5. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    6. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    7. Alena Otto & Nils Boysen & Armin Scholl & Rico Walter, 2017. "Ergonomic workplace design in the fast pick area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 945-975, October.
    8. Izabela Kudelska & Rafal Niedbal, 2021. "The Impact of Organizational Change on the Improvement of the Picking Process in a Logistics Center – A Case Study," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 882-892.
    9. D. G. Mogale & Sri Krishna Kumar & Manoj Kumar Tiwari, 2020. "Green food supply chain design considering risk and post-harvest losses: a case study," Annals of Operations Research, Springer, vol. 295(1), pages 257-284, December.
    10. Boysen, Nils & Stephan, Konrad, 2016. "A survey on single crane scheduling in automated storage/retrieval systems," European Journal of Operational Research, Elsevier, vol. 254(3), pages 691-704.
    11. I. Kudelska & G. Pawłowski, 2020. "Influence of assortment allocation management in the warehouse on the human workload," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 779-795, June.
    12. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    13. Battini, Daria & Glock, Christoph H. & Grosse, Eric H. & Persona, Alessandro & Sgarbossa, Fabio, 2017. "Reprint of “Ergo-lot-sizing: An approach to integrate ergonomic and economic objectives in manual materials handling”," International Journal of Production Economics, Elsevier, vol. 194(C), pages 32-42.
    14. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
    15. Holzapfel, Andreas & Potoczki, Tobias & Kuhn, Heinrich, 2023. "Designing the breadth and depth of distribution networks in the retail trade," International Journal of Production Economics, Elsevier, vol. 257(C).
    16. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    17. Karolina Werner-Lewandowska & Adam Kolinski & Amadeusz Urbaniak, 2022. "The Analysis of the Effect of Motivators on the Performance of Warehouse Employees in Distribution Centers," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 286-295.
    18. Maria A. M. Trindade & Paulo S. A. Sousa & Maria R. A. Moreira, 2022. "Ramping up a heuristic procedure for storage location assignment problem with precedence constraints," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 646-669, September.
    19. Schuster Puga, Matías & Tancrez, Jean-Sébastien, 2017. "A heuristic algorithm for solving large location–inventory problems with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 259(2), pages 413-423.
    20. Alessio Ishizaka & Philippe Nemery, 2013. "A Multi-Criteria Group Decision Framework for Partner Grouping When Sharing Facilities," Group Decision and Negotiation, Springer, vol. 22(4), pages 773-799, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3654-:d:1070717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.