IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4615-d1404678.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

An Integrated Multi-Criteria Decision Support Model for Sustainable Ship Queuing Policy Application via Vessel Traffic Service (VTS)

Author

Listed:
  • Önder Çağlayan

    (Department of Maritime Transport Engineering, Institute of Graduate Studies, Iskenderun Technical University, Hatay 31200, Turkey)

  • Murat Aymelek

    (Department of Naval Architecture and Marine Engineering, Barbaros Hayrettin Naval Architecture and Maritime Faculty, Iskenderun Technical University, Hatay 31200, Turkey
    Department of Business Management, School of Business and Law, University of Brighton, Brighton BN2 4AT, UK)

Abstract

The International Maritime Organization (IMO) persistently improves policies to mitigate greenhouse gas (GHG) emissions from maritime operations, emphasizing the significance of operational measures. Simultaneously, heightened recognition of collaborative efforts within the maritime sector has increased the applicability of arrival policies like Just-In-Time Arrival (JITA), aimed at curtailing unnecessary anchorage time and emissions affecting adjacent communities in port vicinities. Nevertheless, ongoing initiatives advocate adopting JITA over the prevailing First Come, First Served (FCFS) policy, which is perceived as inefficient and, in the meantime, fair in the shipping industry. This research introduces an integrated decision support model to facilitate the implementation of a sustainable ship queuing policy by the VTS. The model addresses critical concerns, including the priorities of relevant authorities, the duration of nautical services for incoming vessels, and carbon dioxide (CO 2 ) emissions attributable to anchorage waiting times. The decision support framework presented integrates the Fuzzy Analytical Hierarchy Process (FAHP) and PROMETHEE II methodologies; the study’s outcomes suggest that the model significantly reduces ships’ unnecessary CO 2 emissions during anchorage waiting periods compared to the FCFS policy, with reduction rates ranging from 32.8% to 45% based on case analysis. Moreover, the proposed model ensures fairness by treating competing arriving ships equitably according to predefined criteria.

Suggested Citation

  • Önder Çağlayan & Murat Aymelek, 2024. "An Integrated Multi-Criteria Decision Support Model for Sustainable Ship Queuing Policy Application via Vessel Traffic Service (VTS)," Sustainability, MDPI, vol. 16(11), pages 1-33, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4615-:d:1404678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Mindy & Pham, Hoang & Zhang, Xuemei, 1999. "A methodology for priority setting with application to software development process," European Journal of Operational Research, Elsevier, vol. 118(2), pages 375-389, October.
    2. Bertrand Mareschal & Jean Pierre Brans, 1992. "PROMETHEE V: MCDM problems with segmentation constraints," ULB Institutional Repository 2013/9341, ULB -- Universite Libre de Bruxelles.
    3. J Fernando Alvarez & Tore Longva & Erna S Engebrethsen, 2010. "A methodology to assess vessel berthing and speed optimization policies," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(4), pages 327-346, December.
    4. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    5. Goumas, M. & Lygerou, V., 2000. "An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects," European Journal of Operational Research, Elsevier, vol. 123(3), pages 606-613, June.
    6. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    7. Ulengin, Fusun & Ilker Topcu, Y. & Sahin, Sule Onsel, 2001. "An integrated decision aid system for Bosphorus water-crossing problem," European Journal of Operational Research, Elsevier, vol. 134(1), pages 179-192, October.
    8. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    9. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    10. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    11. Alexander Senss & Onder Canbulat & Dogancan Uzun & Sefer Anil Gunbeyaz & Osman Turan, 2023. "Just in time vessel arrival system for dry bulk carriers," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-37, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goswami Shankha Shubhra, 2020. "Outranking Methods: Promethee I and Promethee II," Foundations of Management, Sciendo, vol. 12(1), pages 93-110, January.
    2. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    3. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    4. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    5. Marta Bottero & Chiara D’Alpaos & Alessandra Oppio, 2019. "Ranking of Adaptive Reuse Strategies for Abandoned Industrial Heritage in Vulnerable Contexts: A Multiple Criteria Decision Aiding Approach," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    6. Rahimdel, Mohammad Javad & Noferesti, Hossein, 2020. "Investment preferences of Iran's mineral extraction sector with a focus on the productivity of the energy consumption, water and labor force," Resources Policy, Elsevier, vol. 67(C).
    7. G Özerol & E Karasakal, 2008. "Interactive outranking approaches for multicriteria decision-making problems with imprecise information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1253-1268, September.
    8. Ateekh Ur Rehman & Syed Hammad Mian & Usama Umer & Yusuf Siraj Usmani, 2019. "Strategic Outcome Using Fuzzy-AHP-Based Decision Approach for Sustainable Manufacturing," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    9. Lucia Rocchi & Anthony G. Rizzo & Luisa Paolotti & Antonio Boggia & Maria Attard, 2024. "Assessing climate change vulnerability of coastal roads," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-29, June.
    10. Mohammad Nikoo & Nafise Khorramshokouh & Shahryar Monghasemi, 2015. "Optimal Design of Detention Rockfill Dams Using a Simulation-Based Optimization Approach with Mixed Sediment in the Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5469-5488, December.
    11. Anjali Singh & Anjana Gupta & Aparna Mehra, 2017. "Energy planning problems with interval-valued 2-tuple linguistic information," Operational Research, Springer, vol. 17(3), pages 821-848, October.
    12. Montlaur, Adeline & Delgado, Luis & Prats, Xavier, 2023. "Domain-driven multiple-criteria decision-making for flight crew decision support tool," Journal of Air Transport Management, Elsevier, vol. 112(C).
    13. Tsuen-Ho Hsu & Ling-Zhong Lin, 2014. "Using Fuzzy Preference Method for Group Package Tour Based on the Risk Perception," Group Decision and Negotiation, Springer, vol. 23(2), pages 299-323, March.
    14. Majid Roodposhti & Saeed Rahimi & Mansour Beglou, 2014. "PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 77-95, August.
    15. Morais, Danielle Costa & de Almeida, Adiel Teixeira, 2007. "Group decision-making for leakage management strategy of water network," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 441-459.
    16. Zhang, Long & Yu, Jing & Sovacool, Benjamin K. & Ren, Jingzheng, 2017. "Measuring energy security performance within China: Toward an inter-provincial prospective," Energy, Elsevier, vol. 125(C), pages 825-836.
    17. Pelissari, Renata & José Abackerli, Alvaro & Ben Amor, Sarah & Célia Oliveira, Maria & Infante, Kleber Manoel, 2021. "Multiple criteria hierarchy process for sorting problems under uncertainty applied to the evaluation of the operational maturity of research institutions," Omega, Elsevier, vol. 103(C).
    18. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    19. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    20. Mahsa Ghandi & Abbas Roozbahani, 2020. "Risk Management of Drinking Water Supply in Critical Conditions Using Fuzzy PROMETHEE V Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 595-615, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4615-:d:1404678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.