IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5352-d1100176.html
   My bibliography  Save this article

Identifying Waste Supply Chain Coordination Barriers with Fuzzy MCDM

Author

Listed:
  • Chen Liang

    (School of Information and Business Management, Dalian Neusoft University of Information, Dalian 116023, China)

  • Dongshi Sun

    (School of Information and Business Management, Dalian Neusoft University of Information, Dalian 116023, China)

  • Danlan Xie

    (College of Artificial Intelligence and E-Commerce, Zhejiang Gongshang University Hangzhou College of Commerce, Hangzhou 311599, China)

Abstract

The stability and efficiency of the waste supply chain (WSC) is related to the urban environment. This study constructed a framework of barriers to coordinating the WSC based on four perspectives: the costs and benefits, mechanisms involved, behaviors of the subjects, and technologies and standards used. We used an analytic network process based on the fuzzy decision-making trial and evaluation laboratory to calculate the centrality and weight of each barrier factor, and we determined the critical barriers to coordination by combining their results. A causality diagram of the barriers was drawn, and a scheme of coordination of the WSC was designed based on a closed-loop supply chain around the critical barriers. The results show that contradictions in benefits between subjects, contradictions between economic and social benefits, excessive subsidies, the failure of the market mechanism, the lack of a mechanism for supervision, and blocked information and distrust among the subjects are the five most critical barriers to the coordination of the WSC, with excessive subsidies the root cause of the lack of coordination. The subsidy for direct waste disposal should be used to reduce the cost of the operation of the WSC, waste recycling should be improved, an information-sharing platform should be built, and the cost of recyclable waste for manufacturers should be reduced to improve the efficiency of the WSC.

Suggested Citation

  • Chen Liang & Dongshi Sun & Danlan Xie, 2023. "Identifying Waste Supply Chain Coordination Barriers with Fuzzy MCDM," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5352-:d:1100176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    2. Nachalida Yukalang & Beverley Clarke & Kirstin Ross, 2017. "Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand," IJERPH, MDPI, vol. 14(9), pages 1-23, September.
    3. Samantha E. Cruz-Sotelo & Sara Ojeda-Benítez & Jorge Jáuregui Sesma & Karla I. Velázquez-Victorica & Néstor Santillán-Soto & O. Rafael García-Cueto & Víctor Alcántara Concepción & Camilo Alcántara, 2017. "E-Waste Supply Chain in Mexico: Challenges and Opportunities for Sustainable Management," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    4. Zezhou Wu & Ann T.W. Yu & Chi Sun Poon, 2020. "Promoting effective construction and demolition waste management towards sustainable development: A case study of Hong Kong," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1713-1724, November.
    5. Struk, Michal, 2017. "Distance and incentives matter: The separation of recyclable municipal waste," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 155-162.
    6. Sen Guo & Wenyue Zhang & Xiao Gao, 2020. "Business Risk Evaluation of Electricity Retail Company in China Using a Hybrid MCDM Method," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    7. Xiaodong Zhu & Lingfei Yu & Ji Zhang & Chenliang Li & Yizhao Zhao, 2018. "Warranty Decision Model and Remanufacturing Coordination Mechanism in Closed-Loop Supply Chain: View from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    8. Bo Xie & Tao Guo & Dan Zhao & Peiyan Jiang & Weizi Li, 2022. "A Closed-Loop Supply Chain Operation Problem under Different Recycling Modes and Patent Licensing Strategies," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    9. Mehrnaz Jalali & Bo Feng & Junwen Feng, 2022. "An Analysis of Barriers to Sustainable Supply Chain Management Implementation: The Fuzzy DEMATEL Approach," Sustainability, MDPI, vol. 14(20), pages 1-30, October.
    10. Ananna Paul & Nagesh Shukla & Sanjoy Kumar Paul & Andrea Trianni, 2021. "Sustainable Supply Chain Management and Multi-Criteria Decision-Making Methods: A Systematic Review," Sustainability, MDPI, vol. 13(13), pages 1-28, June.
    11. Nahman, Anton, 2010. "Extended producer responsibility for packaging waste in South Africa: Current approaches and lessons learned," Resources, Conservation & Recycling, Elsevier, vol. 54(3), pages 155-162.
    12. Dongshi Sun & Danlan Xie & Peng Jiang & Jingci Xie & Yang Xu & Yining Ren, 2021. "Simulating the Effect of Mixed Subsidy Policies on Urban Low-Value Recyclable Waste in China: A System Dynamics Approach," IJERPH, MDPI, vol. 18(20), pages 1-24, October.
    13. Chen, I-Shuo, 2016. "A combined MCDM model based on DEMATEL and ANP for the selection of airline service quality improvement criteria: A study based on the Taiwanese airline industry," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 7-18.
    14. Ata Allah Taleizadeh & Milad Shahriari & Shib Sankar Sana, 2021. "Pricing and Coordination Strategies in a Dual Channel Supply Chain with Green Production under Cap and Trade Regulation," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    15. Manuel Sousa & Maria Fatima Almeida & Rodrigo Calili, 2021. "Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda," Sustainability, MDPI, vol. 13(8), pages 1-37, April.
    16. Fuli Zhou & Xu Wang & Yun Lin & Yandong He & Lin Zhou, 2016. "Strategic Part Prioritization for Quality Improvement Practice Using a Hybrid MCDM Framework: A Case Application in an Auto Factory," Sustainability, MDPI, vol. 8(6), pages 1-17, June.
    17. Huijin Cheng & Hao Ding, 2020. "Incentive Decision for Supply Chain with Corporate Social Responsibility and Lag Effect," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    18. Xiaoyu Yang & Xiaopeng Guo & Kun Yang, 2021. "Redesigning the Municipal Solid Waste Supply Chain Considering the Classified Collection and Disposal: A Case Study of Incinerable Waste in Beijing," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    19. Chen, Cheng-Kang & Ulya, M. Akmalul ', 2019. "Analyses of the reward-penalty mechanism in green closed-loop supply chains with product remanufacturing," International Journal of Production Economics, Elsevier, vol. 210(C), pages 211-223.
    20. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    21. Prajapati, Kishan Kumar & Yadav, Monika & Singh, Rao Martand & Parikh, Priti & Pareek, Nidhi & Vivekanand, Vivekanand, 2021. "An overview of municipal solid waste management in Jaipur city, India - Current status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Liang Lin & Jwu-Jenq Chen & Yu-Yu Ma, 2023. "Ranking of Service Quality Solution for Blended Design Teaching Using Fuzzy ANP and TOPSIS in the Post-COVID-19 Era," Mathematics, MDPI, vol. 11(5), pages 1-28, March.
    2. Tingting Li & Dan Zhao & Guiyun Liu & Yuhong Wang, 2022. "How to Evaluate College Students’ Green Innovation Ability—A Method Combining BWM and Modified Fuzzy TOPSIS," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    3. Gudiel Pineda, Pedro Jose & Liou, James J.H. & Hsu, Chao-Che & Chuang, Yen-Ching, 2018. "An integrated MCDM model for improving airline operational and financial performance," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 103-117.
    4. Jahangoshai Rezaee, Mustafa & Yousefi, Samuel, 2018. "An intelligent decision making approach for identifying and analyzing airport risks," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 14-27.
    5. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    6. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    7. Lichi Zhang & Yanyan Jiang & Junmin Wu, 2022. "Evolutionary Game Analysis of Government and Residents’ Participation in Waste Separation Based on Cumulative Prospect Theory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    8. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    9. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    10. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    11. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    12. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    13. Katalin Lipták & Andrea S. Gubik & Ágnes Horváth & Mónika Kis-Orloczki, 2021. "The waste management sector of Hungary," Theory Methodology Practice (TMP), Faculty of Economics, University of Miskolc, vol. 17(01), pages 31-42.
    14. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    15. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    16. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    17. Kawther Saeedi & Anna Visvizi & Dimah Alahmadi & Amal Babour, 2023. "Smart Cities and Households’ Recyclable Waste Management: The Case of Jeddah," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    18. Serhat Yuksel & Hasan Dincer & Senol Emir, 2017. "Comparing the performance of Turkish deposit banks by using DEMATEL, Grey Relational Analysis (GRA) and MOORA approaches," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 3(2), pages 26-47, December.
    19. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    20. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5352-:d:1100176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.