IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5070-d1096116.html
   My bibliography  Save this article

Performance Evaluation of an Indirect-Mode Forced Convection Solar Dryer Equipped with a PV/T Air Collector for Drying Tomato Slices

Author

Listed:
  • Houssam Chouikhi

    (Department of Mechanical Engineering, College of Engineering, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
    Laboratory of Electromechanical Systems (LASEM), National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Baher M. A. Amer

    (Department of Agricultural Systems Engineering, College of Agricultural & Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
    Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, Giza 12613, Egypt)

Abstract

This paper proposes an indirect-mode forced convection solar dryer equipped with a PV/T air collector. The PV/T air collector generates both heated air and electrical energy, which are used to force convection in the solar dryer. Experiments were carried out on selected tomato slices for which the temperature and humidity readings as well as the masses of the dried samples were instantaneously recorded for two days. A thermal analysis was performed on the solar drying system to investigate its performance. The PV/T dryer’s air temperature and velocity simulation using CFD modeling were validated by the experimental results for which the drying chamber was empty, without tomato slices. The experimental and numerical results were in good agreement. The difference between the CFD model and the experimental results for air temperature was around 1 °C (3%) and 2 °C (5%) for the solar collector and drying chamber, respectively. The average daily efficiencies of the collector, dryer, and PV panel for the solar drying system were estimated to be 30.9%, 15.2%, and 8.7%, respectively.

Suggested Citation

  • Houssam Chouikhi & Baher M. A. Amer, 2023. "Performance Evaluation of an Indirect-Mode Forced Convection Solar Dryer Equipped with a PV/T Air Collector for Drying Tomato Slices," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5070-:d:1096116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alonso García, M.C. & Balenzategui, J.L., 2004. "Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations," Renewable Energy, Elsevier, vol. 29(12), pages 1997-2010.
    2. Shahsavar, Amin & Eisapour, Mehdi & Talebizadehsardari, Pouyan, 2020. "Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular," Energy, Elsevier, vol. 208(C).
    3. Iranmanesh, Masoud & Samimi Akhijahani, Hadi & Barghi Jahromi, Mohammad Saleh, 2020. "CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system," Renewable Energy, Elsevier, vol. 145(C), pages 1192-1213.
    4. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    5. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    6. Baher M. A. Amer & Houssam Chouikhi, 2020. "Smartphone Application Using a Visual Programming Language to Compute Drying/Solar Drying Characteristics of Agricultural Products," Sustainability, MDPI, vol. 12(19), pages 1-30, October.
    7. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Isaac, Pilatowsky Figueroa & Rogelio, Brito Orosco, 2020. "Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum)," Renewable Energy, Elsevier, vol. 147(P1), pages 845-855.
    8. Azam, Mostafa M. & Eltawil, Mohamed A. & Amer, Baher M.A., 2020. "Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes," Energy, Elsevier, vol. 212(C).
    9. Das, Biplab & Mondol, Jayanta Deb & Debnath, Suman & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, A., 2020. "Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation," Renewable Energy, Elsevier, vol. 152(C), pages 567-578.
    10. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Das, Mehmet & Akpinar, Ebru Kavak, 2021. "Investigation of the effects of solar tracking system on performance of the solar air dryer," Renewable Energy, Elsevier, vol. 167(C), pages 907-916.
    4. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    5. Sivakumar, S. & Velmurugan, C. & Dhas, D.S. Ebenezer Jacob & Solomon, A. Brusly & Dev Wins, K. Leo, 2020. "Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer," Renewable Energy, Elsevier, vol. 155(C), pages 1165-1172.
    6. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    7. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    8. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    9. Ekka, Jasinta Poonam & Bala, Krishnendu & Muthukumar, P. & Kanaujiya, Dipak Kumar, 2020. "Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates," Renewable Energy, Elsevier, vol. 152(C), pages 55-66.
    10. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    11. Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
    12. Baher M. A. Amer & Houssam Chouikhi, 2020. "Smartphone Application Using a Visual Programming Language to Compute Drying/Solar Drying Characteristics of Agricultural Products," Sustainability, MDPI, vol. 12(19), pages 1-30, October.
    13. Das, Biplab & Mondol, Jayanta Deb & Negi, Sushant & Smyth, Mervyn & Pugsley, Adrian, 2021. "Experimental performance analysis of a novel sand coated and sand filled polycarbonate sheet based solar air collector," Renewable Energy, Elsevier, vol. 164(C), pages 990-1004.
    14. Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
    15. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    16. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    17. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    18. Ghasemian, Mehran & Sheikholeslami, M. & Dehghan, Maziar, 2023. "Performance improvement of photovoltaic/thermal systems by using twisted tapes in the coolant tubes with different cross-section patterns," Energy, Elsevier, vol. 279(C).
    19. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    20. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5070-:d:1096116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.