IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p3909-d1075597.html
   My bibliography  Save this article

Effect of Alkali and Membrane Area on the Simultaneous Recovery of Nitrogen and Phosphorous from Digestate by Membrane Technology and Chemical Precipitation

Author

Listed:
  • Isabel González-García

    (Agricultural Technological Institute of Castilla y León (ITACyL), Ctra. Burgos, km. 119, 47071 Valladolid, Spain)

  • Berta Riaño

    (Agricultural Technological Institute of Castilla y León (ITACyL), Ctra. Burgos, km. 119, 47071 Valladolid, Spain)

  • Beatriz Molinuevo-Salces

    (Agricultural Technological Institute of Castilla y León (ITACyL), Ctra. Burgos, km. 119, 47071 Valladolid, Spain)

  • María Cruz García-González

    (Department of Agroforestry Sciences, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain)

Abstract

Nutrient recovery from the agri-food sector waste is an increasingly recognized option within the framework of the bioeconomy. Membrane technologies and chemical precipitation are among the best valued options for their economic and practical feasibility. In this study, the combination of gas-permeable membrane (GPM) technology for the recovery of nitrogen (N) and the chemical precipitation for phosphorous (P) recovery from anaerobically digested swine manure is evaluated. This work studies the effect of the membrane area and the addition of alkali on N and P recovery efficiencies. Specifically, two different membrane area ratios (180 and 100 g of N per m 2 of membrane) with and without the addition of alkali were studied. High nutrient recovery efficiencies, of 77% for N and 80% for P, were obtained after 10 days of experiment with a ratio of 180 g N per m 2 of GPM and the addition of NaOH (1.5 N), along with the precipitant agent (MgCl 2 ) for P precipitation. Hence, a combined configuration was proposed to perform an effective simultaneous recovery of N and P with the minimum amount of membrane needed in a short time.

Suggested Citation

  • Isabel González-García & Berta Riaño & Beatriz Molinuevo-Salces & María Cruz García-González, 2023. "Effect of Alkali and Membrane Area on the Simultaneous Recovery of Nitrogen and Phosphorous from Digestate by Membrane Technology and Chemical Precipitation," Sustainability, MDPI, vol. 15(5), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:3909-:d:1075597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/3909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/3909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wilhelm Römer & Bernd Steingrobe, 2018. "Fertilizer Effect of Phosphorus Recycling Products," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    2. Beckinghausen, Aubrey & Odlare, Monica & Thorin, Eva & Schwede, Sebastian, 2020. "From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Khoshnevisan, Benyamin & He, Li & Xu, Mingyi & Valverde-Pérez, Borja & Sillman, Jani & Mitraka, Georgia-Christina & Kougias, Panagiotis G. & Zhang, Yifeng & Yan, Shuiping & Ji, Long & Carbajales-Dale,, 2022. "From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Bethany Cooper & Walter O. Okello, 2021. "An economic lens to understanding antimicrobial resistance: disruptive cases to livestock and wastewater management in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(4), pages 900-917, October.
    5. Byun, Manhee & Lim, Dongjun & Lee, Boreum & Kim, Ayeon & Lee, In-Beum & Brigljević, Boris & Lim, Hankwon, 2022. "Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration," Applied Energy, Elsevier, vol. 307(C).
    6. Abdullah Omar & Fares Almomani & Hazim Qiblawey & Kashif Rasool, 2024. "Advances in Nitrogen-Rich Wastewater Treatment: A Comprehensive Review of Modern Technologies," Sustainability, MDPI, vol. 16(5), pages 1-37, March.
    7. Gerald Steiner & Bernhard Geissler, 2018. "Sustainable Mineral Resource Management—Insights into the Case of Phosphorus," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    8. Inga-Mareike Bach & Lisa Essich & Andrea Bauerle & Torsten Müller, 2022. "Efficiency of Phosphorus Fertilizers Derived from Recycled Biogas Digestate as Applied to Maize and Ryegrass in Soils with Different pH," Agriculture, MDPI, vol. 12(3), pages 1-17, February.
    9. Marzena Smol & Michał Preisner & Augusto Bianchini & Jessica Rossi & Ludwig Hermann & Tanja Schaaf & Jolita Kruopienė & Kastytis Pamakštys & Maris Klavins & Ruta Ozola-Davidane & Daina Kalnina & Elina, 2020. "Strategies for Sustainable and Circular Management of Phosphorus in the Baltic Sea Region: The Holistic Approach of the InPhos Project," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    10. Ouping Deng & Sitong Wang & Jiangyou Ran & Shuai Huang & Xiuming Zhang & Jiakun Duan & Lin Zhang & Yongqiu Xia & Stefan Reis & Jiayu Xu & Jianming Xu & Wim Vries & Mark A. Sutton & Baojing Gu, 2024. "Managing urban development could halve nitrogen pollution in China," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Raja, R. & Kumar, S., 2023. "Cupola slag as a green concrete-making material and its performance characteristics - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Golzar, Farzin & Silveira, Semida, 2021. "Impact of wastewater heat recovery in buildings on the performance of centralized energy recovery – A case study of Stockholm," Applied Energy, Elsevier, vol. 297(C).
    13. Mohammad A. T. Alsheyab & Sigrid Kusch-Brandt, 2018. "Potential Recovery Assessment of the Embodied Resources in Qatar’s Wastewater," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    14. Wang, Yuanhui & Gu, Yuchen & Zhang, Hua & Yang, Jun & Wang, Jianxin & Guan, Wanbing & Chen, Jieyu & Chi, Bo & Jia, Lichao & Muroyama, Hiroki & Matsui, Toshiaki & Eguchi, Koichi & Zhong, Zheng, 2020. "Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells," Applied Energy, Elsevier, vol. 270(C).
    15. Jolanta Latosińska & Przemysław Czapik, 2020. "The Ecological Risk Assessment and the Chemical Speciation of Heavy Metals in Ash after the Incineration of Municipal Sewage Sludge," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    16. Inga-Mareike Bach & Lisa Essich & Torsten Müller, 2021. "Efficiency of Recycled Biogas Digestates as Phosphorus Fertilizers for Maize," Agriculture, MDPI, vol. 11(6), pages 1-21, June.
    17. Beckinghausen, Aubrey & Reynders, Jonathan & Merckel, Ryan & Wu, Yun Wen & Marais, Heidi & Schwede, Sebastian, 2020. "Post-pyrolysis treatments of biochars from sewage sludge and A. mearnsii for ammonia (NH4-n) recovery," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:3909-:d:1075597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.