IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2527-d1052403.html
   My bibliography  Save this article

Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review

Author

Listed:
  • Zouhair Elkhlifi

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jerosha Iftikhar

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Mohammad Sarraf

    (Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran)

  • Baber Ali

    (Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Muhammad Hamzah Saleem

    (Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar)

  • Irshad Ibranshahib

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Mozart Daltro Bispo

    (Laboratory of Separation Systems and Process Optimization (LASSOP), Center of Technology, Federal University of Alagoas (UFAL), Maceió 57500-970, Brazil)

  • Lucas Meili

    (Laboratory of Processes (LAPRO), Center of Technology, Federal University of Alagoas (UFAL), Maceió 57500-970, Brazil)

  • Sezai Ercisli

    (Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey)

  • Ehlinaz Torun Kayabasi

    (Department of Agricultural Economy, Faculty of Agriculture, Kocaeli University, 41285 Kartepe, Turkey)

  • Naser Alemzadeh Ansari

    (Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran)

  • Alžbeta Hegedűsová

    (Department of Vegetable Production, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia)

  • Zhuqi Chen

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Biochar (BC) properties and its influences within agricultural soil health and environmental ecosystems largely depend on feedstock, residence time and pyrolysis conditions. The organic and inorganic contaminants from soil can be removed using BC as an adsorbent. Additionally, soil amendment with BC is known to improve overall soil quality, microbial and enzymatic activities and soil organic carbon content with nutrient retention and availability. Moreover, one of the great impacts of BC is its capability to capture soil nutrients and sequestrate carbon. The physicochemical properties of biochar could be affected by the feedstocks and pyrolysis conditions (temperature, duration, activation method, etc.). This review paper summarizes the recent research studies on the composition of BC that controls carbon presence in soil, as well as BCs role in improving soil fertility and carbon sequestration, which has not been reported in detail yet. The main finding of the present work revealed that the high pyrolytic temperatures in BC production may have negative impacts on phyto-availability of essential nutrients. Depending on the feedstock raw material and pyrolysis process used for producing BC, it has different capacities for releasing nutrients in the soil. An economically feasible method of producing newly engineered biochar, with more controlled pyrolysis and C-based materials, for suitable agriculture needs to be developed. Further investigation should be carried out to optimize the production procedure and its application to local farming community for sustainable agriculture.

Suggested Citation

  • Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2527-:d:1052403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manzoor Ahmad & Muhammad Ishaq & Wajid Ali Shah & Muhammad Adnan & Shah Fahad & Muhammad Hamzah Saleem & Fahim Ullah Khan & Maria Mussarat & Shadman Khan & Baber Ali & Yasser S. Mostafa & Saad Alamri , 2022. "Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    2. Ankit Saini & Sandeep Manuja & Suresh Kumar & Aqsa Hafeez & Baber Ali & Peter Poczai, 2022. "Impact of Cultivation Practices and Varieties on Productivity, Profitability, and Nutrient Uptake of Rice ( Oryza sativa L.) and Wheat ( Triticum aestivum L.) Cropping System in India," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    3. Mohammad Ghorbani & Elnaz Amirahmadi & Reinhard W. Neugschwandtner & Petr Konvalina & Marek Kopecký & Jan Moudrý & Kristýna Perná & Yves Theoneste Murindangabo, 2022. "The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    4. Ibn Ferjani, A. & Jeguirim, M. & Jellali, S. & Limousy, L. & Courson, C. & Akrout, H. & Thevenin, N. & Ruidavets, L. & Muller, A. & Bennici, S., 2019. "The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 425-433.
    5. Nudrat Aisha Akram & Muhammad Hamzah Saleem & Sidra Shafiq & Hira Naz & Muhammad Farid-ul-Haq & Baber Ali & Fahad Shafiq & Muhammad Iqbal & Mariusz Jaremko & Kamal Ahmad Qureshi, 2022. "Phytoextracts as Crop Biostimulants and Natural Protective Agents—A Critical Review," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    6. Melissa Simiele & Oriana Argentino & Silvia Baronti & Gabriella Stefania Scippa & Donato Chiatante & Mattia Terzaghi & Antonio Montagnoli, 2022. "Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato ( Solanum lycopersicum L.) in a Soilless Substrate," Agriculture, MDPI, vol. 12(8), pages 1-15, July.
    7. Ammara Saleem & Asma Zulfiqar & Baber Ali & Manal Ahmed Naseeb & Arwa Saad Almasaudi & Steve Harakeh, 2022. "Iron Sulfate (FeSO 4 ) Improved Physiological Attributes and Antioxidant Capacity by Reducing Oxidative Stress of Oryza sativa L. Cultivars in Alkaline Soil," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    8. Abdul Salam & Muhammad Siddique Afridi & Muhammad Ammar Javed & Aroona Saleem & Aqsa Hafeez & Ali Raza Khan & Muhammad Zeeshan & Baber Ali & Wardah Azhar & Sumaira & Zaid Ulhassan & Yinbo Gan, 2022. "Nano-Priming against Abiotic Stress: A Way Forward towards Sustainable Agriculture," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    9. Ningning Ma & Lili Zhang & Yulan Zhang & Lijie Yang & Chunxiao Yu & Guanghua Yin & Timothy A Doane & Zhijie Wu & Ping Zhu & Xingzhu Ma, 2016. "Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-10, May.
    10. Colantoni, A. & Evic, N. & Lord, R. & Retschitzegger, S. & Proto, A.R. & Gallucci, F. & Monarca, D., 2016. "Characterization of biochars produced from pyrolysis of pelletized agricultural residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 187-194.
    11. Shah Fahad & Sangram Bhanudas Chavan & Akash Ravindra Chichaghare & Appanderanda Ramani Uthappa & Manish Kumar & Vijaysinha Kakade & Aliza Pradhan & Dinesh Jinger & Gauri Rawale & Dinesh Kumar Yadav &, 2022. "Agroforestry Systems for Soil Health Improvement and Maintenance," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    12. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anetta Siwik-Ziomek & Anna Figas, 2025. "Soil Management for Sustainable Agriculture," Agriculture, MDPI, vol. 15(3), pages 1-5, February.
    2. Jawad Ali & Ibadullah Jan & Hidayat Ullah & Shah Fahad & Shah Saud & Muhammad Adnan & Baber Ali & Ke Liu & Matthew Tom Harrison & Shah Hassan & Sunjeet Kumar & Muhammad Amjad Khan & Muhammad Kamran & , 2023. "Biochemical Response of Okra ( Abelmoschus esculentus L.) to Selenium (Se) under Drought Stress," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    3. Vladimir Ivanovich Trukhachev & Sergey Leonidovich Belopukhov & Marina Grigoryeva & Inna Ivanovna Dmitrevskaya, 2024. "Study of the Sustainability of Ecological and Chemical Indicators of Soils in Organic Farming," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    4. Zhang, Han & Zheng, Jinhui & Hunjra, Ahmed Imran & Zhao, Shikuan & Bouri, Elie, 2024. "How does urban land use efficiency improve resource and environment carrying capacity?," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    5. Radheshyam Yadav & Wusirika Ramakrishna, 2023. "Biochar as an Environment-Friendly Alternative for Multiple Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osama Tahir & Sajid Ali Khan Bangash & Muhammad Ibrahim & Sana Shahab & Sahir Hameed Khattak & Israr Ud Din & Muhammad Nauman Khan & Aqsa Hafeez & Sana Wahab & Baber Ali & Rania M. Makki & Steve Harak, 2022. "Evaluation of Agronomic Performance and Genetic Diversity Analysis Using Simple Sequence Repeats Markers in Selected Wheat Lines," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    2. Ammara Saleem & Asma Zulfiqar & Baber Ali & Manal Ahmed Naseeb & Arwa Saad Almasaudi & Steve Harakeh, 2022. "Iron Sulfate (FeSO 4 ) Improved Physiological Attributes and Antioxidant Capacity by Reducing Oxidative Stress of Oryza sativa L. Cultivars in Alkaline Soil," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    3. Jawad Ali & Ibadullah Jan & Hidayat Ullah & Shah Fahad & Shah Saud & Muhammad Adnan & Baber Ali & Ke Liu & Matthew Tom Harrison & Shah Hassan & Sunjeet Kumar & Muhammad Amjad Khan & Muhammad Kamran & , 2023. "Biochemical Response of Okra ( Abelmoschus esculentus L.) to Selenium (Se) under Drought Stress," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    4. Asifa Naz & Ansa Rebi & Raheela Naz & Muhammad Usman Akbar & Ana Aslam & Amina Kalsom & Abid Niaz & Muhammad Ibrar Ahmad & Shahrish Nawaz & Rizwana Kausar & Baber Ali & Muhammad Hamzah Saleem & Jinxin, 2023. "Impact of Green Manuring on Health of Low Fertility Calcareous Soils," Land, MDPI, vol. 12(3), pages 1-13, February.
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Karuppanan Ramasamy Ramesh & Harshavardhan Krishnarao Deshmukh & Karthikeyan Sivakumar & Vipan Guleria & Rathod Digvijaysinh Umedsinh & Nathakrishnan Krishnakumar & Alagesan Thangamalar & Kathirvel Su, 2023. "Influence of Eucalyptus Agroforestry on Crop Yields, Soil Properties, and System Economics in Southern Regions of India," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    8. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    9. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    10. Sriphirom, Patikorn & Rossopa, Benjamas, 2023. "Assessment of greenhouse gas mitigation from rice cultivation using alternate wetting and drying and rice straw biochar in Thailand," Agricultural Water Management, Elsevier, vol. 290(C).
    11. Kanbur, Ravi & Leard, Benjamin & Bento, Antonio, 2012. "Super-Additionality: A Neglected Force in Markets for Carbon Offsets," CEPR Discussion Papers 8952, C.E.P.R. Discussion Papers.
    12. Saadi, W. & Rodríguez-Sánchez, S. & Ruiz, B. & Souissi-Najar, S. & Ouederni, A. & Fuente, E., 2019. "Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector," Renewable Energy, Elsevier, vol. 136(C), pages 373-382.
    13. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    14. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen, 2014. "An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions," IJERPH, MDPI, vol. 11(3), pages 1-19, March.
    15. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2021. "Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management," Agriculture, MDPI, vol. 11(4), pages 1-35, April.
    16. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    17. Mushtaq Ahmad Khan & Abdul Basir & Syed Tanveer Shah & Monsif Ur Rehman & Mehmood ul Hassan & Hongbing Zheng & Abdul Basit & Árpád Székely & Aftab Jamal & Emanuele Radicetti & Yaser Hassan Dewir & Rob, 2024. "Sustainable Soil Management in Alkaline Soils: The Role of Biochar and Organic Nitrogen in Enhancing Soil Fertility," Land, MDPI, vol. 13(11), pages 1-17, November.
    18. Ye-Eun Lee & I-Tae Kim & Yeong-Seok Yoo, 2018. "Stabilization of High-Organic-Content Water Treatment Sludge by Pyrolysis," Energies, MDPI, vol. 11(12), pages 1-14, November.
    19. Mannan, M.A. & Mia, Shamim & Halder, Eshita & Dijkstra, Feike A., 2021. "Biochar application rate does not improve plant water availability in soybean under drought stress," Agricultural Water Management, Elsevier, vol. 253(C).
    20. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2527-:d:1052403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.