IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1142-d1028227.html
   My bibliography  Save this article

A Comparison of Students’ Thermal Comfort and Perceived Learning Performance between Two Types of University Halls: Architecture Design Studios and Ordinary Lecture Rooms during the Heating Season

Author

Listed:
  • Rana Elnaklah

    (Faculty of Architecture and Design, Al-Ahliyya Amman University, Amman 19328, Jordan)

  • Yara Ayyad

    (Faculty of Architecture and Design, Al-Ahliyya Amman University, Amman 19328, Jordan)

  • Saba Alnusairat

    (Faculty of Architecture and Design, Al-Ahliyya Amman University, Amman 19328, Jordan)

  • Husam AlWaer

    (School of Art and Design (Architecture and Urban Planning), University of Dundee, Dundee DD1 4HN, UK)

  • Abdulsalam AlShboul

    (Faculty of Architecture and Design, Al-Ahliyya Amman University, Amman 19328, Jordan
    Department of Architecture, School of Engineering, University of Jordan, Amman 11942, Jordan)

Abstract

In classrooms, several variables may affect students’ thermal comfort, and hence health, well-being, and learning performance. In particular, the type of learning activity may play a role in students’ thermal comfort. However, most of the previous research has mainly investigated the thermal comfort of students in ordinary classrooms, while less attention has been paid to students’ thermal comfort in classrooms with particular learning activities, such as architecture design studios, where students spend a long time and perform learning activities with high metabolic rates. For this purpose, we compared the thermal comfort and perceived learning performance of students majoring in architecture (n = 173) between two types of university halls, namely, design studios and typical lecture rooms (N = 15). We applied the classroom–comfort–data method, which included collecting physical, physiological, and psychological data from students and classrooms. Data were collected during the heating season (November 2021–January 2022) in a university building in Jordan. We conducted continuous monitoring combined with periodic measures for indoor temperature, relative humidity, mean radiant temperature, and air speed. Questionnaires, focus groups, and observations were also used to collect subjective data from students. The results showed statistically significant differences (Δμ = 3.1 °C, p < 0.01, d = 0.61) in indoor temperature between design studios and lecture rooms. Only 58% of students’ votes were within the ASHRAE 55-2107 recommended comfort zone. In design studios, 53% of students felt warm compared to 58.8% of students who had a cold sensation in lecture rooms. Students perceived themselves as more productive when they felt cooler. Our research’s significance lies in its injunction that there must be a special thermal comfort guide for educational buildings that are adapted to the local environment and functions of the spaces, cooperatively.

Suggested Citation

  • Rana Elnaklah & Yara Ayyad & Saba Alnusairat & Husam AlWaer & Abdulsalam AlShboul, 2023. "A Comparison of Students’ Thermal Comfort and Perceived Learning Performance between Two Types of University Halls: Architecture Design Studios and Ordinary Lecture Rooms during the Heating Season," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1142-:d:1028227
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giulia Lamberti & Giacomo Salvadori & Francesco Leccese & Fabio Fantozzi & Philomena M. Bluyssen, 2021. "Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    2. Taesub Lim & Daeung Danny Kim, 2022. "Thermal Comfort Assessment of the Perimeter Zones by Using CFD Simulation," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    3. Yao, Runming & Liu, Jing & Li, Baizhan, 2010. "Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms," Applied Energy, Elsevier, vol. 87(3), pages 1015-1022, March.
    4. Wang, Yang & Kuckelkorn, Jens & Zhao, Fu-Yun & Spliethoff, Hartmut & Lang, Werner, 2017. "A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1303-1319.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiqiang Shi & Qianni Liu & Zhongjun Zhang & Tianhao Yue, 2022. "Thermal Comfort in the Design Classroom for Architecture in the Cold Area of China," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    2. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2020. "uhuMEBr: Energy Refurbishment of Existing Buildings in Subtropical Climates to Become Minimum Energy Buildings," Energies, MDPI, vol. 13(5), pages 1-35, March.
    4. Piotr Kosiński & Aldona Skotnicka-Siepsiak, 2022. "Possibilities of Adapting the University Lecture Room to the Green University Standard in Terms of Thermal Comfort and Ventilation Accuracy," Energies, MDPI, vol. 15(10), pages 1-23, May.
    5. Afaq Hyder Chohan & Jihad Awad, 2022. "Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    6. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Łukasz J. Orman & Grzegorz Majewski & Norbert Radek & Jacek Pietraszek, 2022. "Analysis of Thermal Comfort in Intelligent and Traditional Buildings," Energies, MDPI, vol. 15(18), pages 1-25, September.
    8. Wang, Yang & Kuckelkorn, Jens & Li, Daoliang & Du, Jiangtao, 2018. "Evaluation on distributed renewable energy system integrated with a Passive House building using a new energy performance index," Energy, Elsevier, vol. 161(C), pages 81-89.
    9. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    10. Song, William Hasung & Wang, Yang & Gillich, Aaron & Ford, Andy & Hewitt, Mark, 2019. "Modelling development and analysis on the Balanced Energy Networks (BEN) in London," Applied Energy, Elsevier, vol. 233, pages 114-125.
    11. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    12. Turhan, Cihan & Simani, Silvio & Gokcen Akkurt, Gulden, 2021. "Development of a personalized thermal comfort driven controller for HVAC systems," Energy, Elsevier, vol. 237(C).
    13. Daoru Liu & Zhigang Ren & Shen Wei & Zhe Song & Peipeng Li & Xin Chen, 2019. "Investigations on the Winter Thermal Environment of Bedrooms in Zhongxiang: A Case Study in Rural Areas in Hot Summer and Cold Winter Region of China," Sustainability, MDPI, vol. 11(17), pages 1-25, August.
    14. Alejandro Moreno-Rangel & Tim Sharpe & Gráinne McGill & Filbert Musau, 2020. "Indoor Air Quality in Passivhaus Dwellings: A Literature Review," IJERPH, MDPI, vol. 17(13), pages 1-16, July.
    15. Liang, Han-Hsi & Lin, Tzu-Ping & Hwang, Ruey-Lung, 2012. "Linking occupants’ thermal perception and building thermal performance in naturally ventilated school buildings," Applied Energy, Elsevier, vol. 94(C), pages 355-363.
    16. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    17. Yinan Li & Neng Zhu & Beibei Qin, 2019. "Target Setting Outlook for New Residential Building Energy Efficiency Promotion in China: A Frontline Perspective Using Delphi," Energies, MDPI, vol. 12(9), pages 1-29, April.
    18. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    19. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Xinzhi Gong & Qinglin Meng & Yilei Yu, 2021. "A Field Study on Thermal Comfort in Multi-Storey Residential Buildings in the Karst Area of Guilin," Sustainability, MDPI, vol. 13(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1142-:d:1028227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.