IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp326-342.html
   My bibliography  Save this article

Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season

Author

Listed:
  • Luo, Yongqiang
  • Zhang, Ling
  • Liu, Zhongbing
  • Xie, Lei
  • Wang, Xiliang
  • Wu, Jing

Abstract

In this research, a double skin facade integrated with amorphous silicon photovoltaic blinds (PVB-DSF) is experimentally investigated. This structure can fulfill multiple functions of the power generation in situ and lowering heat gain or loss through glazing. The experiment rig was built to investigate the thermal and electrical performance of PVB-DSF system. The performance difference between ventilation and non-ventilation mode of PVB-DSF is first analyzed. Then thermal performance of PVB-DSF is demonstrated by comparison with traditional opaque façade (brick wall) and semi-transparent glazing facade (double skin façade) in winter conditions. The results demonstrate that PVB-DSF can reach much higher solar heat gain coefficient (SHGC) and lower heat transfer coefficient in non-ventilation mode. PVB-DSF can save about 1121 Wh/(m2day) of heating energy in winter compared with the brick wall. By average value, the heat gain of PVB-DSF could be 73.74% higher than conventional DSF in winter. In addition, another type of semi-transparent PV-DSF is also compared with PVB-DSF. The results suggest that PVB-DSF can achieve better thermal performance but lower power generation efficiency comparing to semi-transparent PV-DSF.

Suggested Citation

  • Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:326-342
    DOI: 10.1016/j.energy.2018.09.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Lee, Minhyun, 2017. "An economic impact analysis of residential progressive electricity tariffs in implementing the building-integrated photovoltaic blind using an advanced finite element model," Applied Energy, Elsevier, vol. 202(C), pages 259-274.
    2. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    3. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
    4. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    5. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2016. "Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics," Renewable Energy, Elsevier, vol. 89(C), pages 743-756.
    6. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    7. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    8. Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
    9. Shameri, M.A. & Alghoul, M.A. & Sopian, K. & Zain, M. Fauzi M. & Elayeb, Omkalthum, 2011. "Perspectives of double skin façade systems in buildings and energy saving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1468-1475, April.
    10. Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
    11. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    12. Han, Jun & Lu, Lin & Yang, Hongxing, 2010. "Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings," Applied Energy, Elsevier, vol. 87(11), pages 3431-3437, November.
    13. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    14. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Liu, Zhongbing & Wu, Zhenghong & He, Xihua, 2017. "Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy," Applied Energy, Elsevier, vol. 204(C), pages 887-897.
    15. Wang, Yang & Kuckelkorn, Jens & Zhao, Fu-Yun & Spliethoff, Hartmut & Lang, Werner, 2017. "A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1303-1319.
    16. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    17. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2005. "Energy savings of office buildings by the use of semi-transparent solar cells for windows," Renewable Energy, Elsevier, vol. 30(3), pages 281-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Wang, Chuyao & Li, Niansi & Gu, Tao & Ji, Jie & Yu, Bendong, 2022. "Design and performance investigation of a novel double-skin ventilated window integrated with air-purifying blind," Energy, Elsevier, vol. 254(PC).
    3. Federico Minelli & Diana D’Agostino & Maria Migliozzi & Francesco Minichiello & Pierpaolo D’Agostino, 2023. "PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping," Energies, MDPI, vol. 16(15), pages 1-35, August.
    4. Zhiqiang Wang & Qi Tian & Jie Jia, 2022. "The Convective Heat Transfer Performance and Structural Optimization of the Cavity in Energy-Saving Thermal Insulation Windows under Cold Air Penetration Condition," Energies, MDPI, vol. 15(7), pages 1-21, March.
    5. Paolo Corti & Pierluigi Bonomo & Francesco Frontini, 2023. "Paper Review of External Integrated Systems as Photovoltaic Shading Devices," Energies, MDPI, vol. 16(14), pages 1-21, July.
    6. Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).
    7. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    8. Wei Zhang & Wei Wang & Lingzhi Xie & Hao Tian & Mo Chen & Zihao Li & Jianhui Li, 2020. "Cross-seasonal Experimental Study on the Comprehensive Performance of C-Si PV Window," Energies, MDPI, vol. 13(21), pages 1-26, October.
    9. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    11. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    12. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    13. Yu, Bendong & Li, Niansi & Ji, Jie & Wang, Chuyao, 2021. "Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter," Renewable Energy, Elsevier, vol. 167(C), pages 313-332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Su, Xiaosong & Lian, Jinbu & Luo, Yongwei, 2018. "Coupled thermal-electrical-optical analysis of a photovoltaic-blind integrated glazing façade," Applied Energy, Elsevier, vol. 228(C), pages 1870-1886.
    2. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    4. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    6. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    7. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    8. Paolo Corti & Pierluigi Bonomo & Francesco Frontini, 2023. "Paper Review of External Integrated Systems as Photovoltaic Shading Devices," Energies, MDPI, vol. 16(14), pages 1-21, July.
    9. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    10. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    11. Zhu, Li & Zhang, Jiqiang & Li, Qingxiang & Shao, Zebiao & Chen, Mengdong & Yang, Yang & Sun, Yong, 2020. "Comprehensive analysis of heat transfer of double-skin facades integrated high concentration photovoltaic (CPV-DSF)," Renewable Energy, Elsevier, vol. 161(C), pages 635-649.
    12. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    13. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    14. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    15. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    16. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    17. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2018. "A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting," Applied Energy, Elsevier, vol. 228(C), pages 1454-1472.
    18. Ioannidis, Zisis & Rounis, Efstratios-Dimitrios & Athienitis, Andreas & Stathopoulos, Ted, 2020. "Double skin façade integrating semi-transparent photovoltaics: Experimental study on forced convection and heat recovery," Applied Energy, Elsevier, vol. 278(C).
    19. Wu, Zhenghong & Zhang, Ling & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical study on the annual performance of semi-transparent photovoltaic glazing in different climate zones," Energy, Elsevier, vol. 240(C).
    20. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:326-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.