IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v94y2018icp705-718.html
   My bibliography  Save this article

Smart homes and the control of indoor air quality

Author

Listed:
  • Schieweck, Alexandra
  • Uhde, Erik
  • Salthammer, Tunga
  • Salthammer, Lea C.
  • Morawska, Lidia
  • Mazaheri, Mandana
  • Kumar, Prashant

Abstract

Global climate change, demographic change and advancing mechanization of everyday life will go along with new ways of living. Temperature extremes, an ageing society and higher demands on a comfortable life will lead to the implementation of sensor based networks in order to create acceptable and improved living conditions. Originally, the idea of the smart home served primarily the efficient use of energy and the optimization of ventilation technology connected with new ways of constructing buildings (low-energy and passive houses, respectively). Today the term 'smart home' is also linked with the networking of home automation systems, home appliances and communications and entertainment electronics. Living in a smart home often makes also significant demands on the occupants who are required to drastically change some of their living habits. This review summarizes current findings on the effect of measured environmental parameters on indoor air quality, individual thermal comfort and living behavior in smart homes with focus on central Europe. A critical evaluation of available sensor technologies, their application in homes and data security aspects as well as limits and possibilities of current technologies to control particles and gaseous pollutants indoors is included. The review also considers the acceptance of smart technologies by occupants in terms of living habits, perceived indoor air quality and data security.

Suggested Citation

  • Schieweck, Alexandra & Uhde, Erik & Salthammer, Tunga & Salthammer, Lea C. & Morawska, Lidia & Mazaheri, Mandana & Kumar, Prashant, 2018. "Smart homes and the control of indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 705-718.
  • Handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:705-718
    DOI: 10.1016/j.rser.2018.05.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118304040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.05.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    3. Bauermann, Klaas, 2016. "German Energiewende and the heating market – Impact and limits of policy," Energy Policy, Elsevier, vol. 94(C), pages 235-246.
    4. Djamila, Harimi, 2017. "Indoor thermal comfort predictions: Selected issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 569-580.
    5. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.
    6. Wilson, Charlie & Hargreaves, Tom & Hauxwell-Baldwin, Richard, 2017. "Benefits and risks of smart home technologies," Energy Policy, Elsevier, vol. 103(C), pages 72-83.
    7. Bhati, Abhishek & Hansen, Michael & Chan, Ching Man, 2017. "Energy conservation through smart homes in a smart city: A lesson for Singapore households," Energy Policy, Elsevier, vol. 104(C), pages 230-239.
    8. Newsham, Guy R. & Bowker, Brent G., 2010. "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review," Energy Policy, Elsevier, vol. 38(7), pages 3289-3296, July.
    9. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    10. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    11. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    12. Wang, Yang & Kuckelkorn, Jens & Zhao, Fu-Yun & Spliethoff, Hartmut & Lang, Werner, 2017. "A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1303-1319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Armando Pelliccioni & Paolo Monti & Giorgio Cattani & Fabio Boccuni & Marco Cacciani & Silvia Canepari & Pasquale Capone & Maria Catrambone & Mariacarmela Cusano & Maria Concetta D’Ovidio & Antonella , 2020. "Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    2. Patricia Franco & José M. Martínez & Young-Chon Kim & Mohamed A. Ahmed, 2022. "A Cyber-Physical Approach for Residential Energy Management: Current State and Future Directions," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    3. Keh-Kim Kee & Huong-Yong Ting & Yun-Seng Lim & Jackie-Tiew-Wei Ting & Marcella Peter & Khairunnisa Ibrahim & Pau Loke Show, 2022. "Feasibility of UTS Smart Home to Support Sustainable Development Goals of United Nations (UN SDGs): Water and Energy Conservation," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    4. Marlena Piekut, 2021. "The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019," Energies, MDPI, vol. 14(17), pages 1-31, September.
    5. Simona-Vasilica Oprea & Adela Bâra & Ștefan Preda & Osman Bulent Tor, 2020. "A Smart Adaptive Switching Module Architecture Using Fuzzy Logic for an Efficient Integration of Renewable Energy Sources. A Case Study of a RES System Located in Hulubești, Romania," Sustainability, MDPI, vol. 12(15), pages 1-27, July.
    6. Marlena Piekut, 2021. "Between Poverty and Energy Satisfaction in Polish Households Run by People Aged 60 and Older," Energies, MDPI, vol. 14(19), pages 1-30, September.
    7. Elena Korneeva & Nina Olinder & Wadim Strielkowski, 2021. "Consumer Attitudes to the Smart Home Technologies and the Internet of Things (IoT)," Energies, MDPI, vol. 14(23), pages 1-15, November.
    8. Margherita Pillan & Fiammetta Costa & Marco Aureggi, 2019. "The Complexity of Simple Goals: Case Study of a User-Centred Thermoregulation System for Smart Living and Optimal Energy Use," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    9. Ana Ferreira & Nelson Barros, 2022. "COVID-19 and Lockdown: The Potential Impact of Residential Indoor Air Quality on the Health of Teleworkers," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    10. Zhongzhe Shen & Xingjian Peng & Chenlong Du & Mintai Kim, 2023. "Quantifying Sustainability and Landscape Performance: A Smart Devices Assisted Alternative Framework," Sustainability, MDPI, vol. 15(17), pages 1-26, September.
    11. Jagriti Saini & Maitreyee Dutta & Gonçalo Marques, 2020. "Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review," IJERPH, MDPI, vol. 17(14), pages 1-22, July.
    12. Diana Mariana Cocârţă & Mariana Prodana & Ioana Demetrescu & Patricia Elena Maria Lungu & Andreea Cristiana Didilescu, 2021. "Indoor Air Pollution with Fine Particles and Implications for Workers’ Health in Dental Offices: A Brief Review," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    13. Vinh Van Tran & Duckshin Park & Young-Chul Lee, 2020. "Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality," IJERPH, MDPI, vol. 17(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    2. WeiYu Ji & Edwin H. W. Chan, 2019. "Critical Factors Influencing the Adoption of Smart Home Energy Technology in China: A Guangdong Province Case Study," Energies, MDPI, vol. 12(21), pages 1-24, November.
    3. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    4. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.
    5. Daniel J. Mallinson & Saahir Shafi, 2022. "Smart home technology: Challenges and opportunities for collaborative governance and policy research," Review of Policy Research, Policy Studies Organization, vol. 39(3), pages 330-352, May.
    6. Baudier, Patricia & Ammi, Chantal & Deboeuf-Rouchon, Matthieu, 2020. "Smart home: Highly-educated students' acceptance," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    7. Wei Gu & Peng Bao & Wenyuan Hao & Jaewoong Kim, 2019. "Empirical Examination of Intention to Continue to Use Smart Home Services," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    8. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D., 2020. "Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Elma, Onur & Taşcıkaraoğlu, Akın & Tahir İnce, A. & Selamoğulları, Uğur S., 2017. "Implementation of a dynamic energy management system using real time pricing and local renewable energy generation forecasts," Energy, Elsevier, vol. 134(C), pages 206-220.
    12. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    13. Große-Kreul, Felix, 2022. "What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany," Utilities Policy, Elsevier, vol. 75(C).
    14. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    15. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Francesco Liberati & Alessandro Di Giorgio, 2017. "Economic Model Predictive and Feedback Control of a Smart Grid Prosumer Node," Energies, MDPI, vol. 11(1), pages 1-23, December.
    17. Gerardo J. Osório & Miadreza Shafie-khah & Gonçalo C. R. Carvalho & João P. S. Catalão, 2019. "Analysis Application of Controllable Load Appliances Management in a Smart Home," Energies, MDPI, vol. 12(19), pages 1-24, September.
    18. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Hosseinzadeh, Mehdi & Yousefi, Hossein & Khorasani, Sasan Torabzadeh, 2018. "Optimal management of energy hubs and smart energy hubs – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 33-50.
    19. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    20. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:705-718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.