IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15685-d1275466.html
   My bibliography  Save this article

The Impact of Urban Form and Density on Residential Energy Use: A Systematic Review

Author

Listed:
  • Sina Narimani Abar

    (Resource and Energy Systems Group, Spatial Planning Department, Technical University of Dortmund, 44227 Dortmund, Germany)

  • Martin Schulwitz

    (Resource and Energy Systems Group, Spatial Planning Department, Technical University of Dortmund, 44227 Dortmund, Germany)

  • Martin Faulstich

    (Resource and Energy Systems Group, Spatial Planning Department, Technical University of Dortmund, 44227 Dortmund, Germany)

Abstract

The first step for reducing residential energy use is identifying the effective variables in this sector. This review paper extracts 10 urban form variables and discusses their correlations, interpretations, and frequencies alongside methodologies used to quantify their impacts. This review also identifies the parameters that cause mixed effects of density on residential energy use in different studies. Multinomial logistic regression is used to quantify the odds of obtaining a positive or non-significant association rather than a negative correlation. The model can predict the impact of density on residential energy consumption in almost 80% of the cases based on the identified parameters, namely the number of indicators considered in the model as the proxy of density, type of energy, unit of measurement, methodology, data reliability, published year, relevancy, geographical location of case studies and their climate classifications. The result shows that while density correlates negatively with residential energy use in cold climates, its impact could be considered positive in temperate regions.

Suggested Citation

  • Sina Narimani Abar & Martin Schulwitz & Martin Faulstich, 2023. "The Impact of Urban Form and Density on Residential Energy Use: A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15685-:d:1275466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    3. Wiesmann, Daniel & Lima Azevedo, Inês & Ferrão, Paulo & Fernández, John E., 2011. "Residential electricity consumption in Portugal: Findings from top-down and bottom-up models," Energy Policy, Elsevier, vol. 39(5), pages 2772-2779, May.
    4. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    5. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
    6. Bartusch, Cajsa & Odlare, Monica & Wallin, Fredrik & Wester, Lars, 2012. "Exploring variance in residential electricity consumption: Household features and building properties," Applied Energy, Elsevier, vol. 92(C), pages 637-643.
    7. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    8. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    9. William P. Anderson & Pavlos S. Kanaroglou & Eric J. Miller, 1996. "Urban Form, Energy and the Environment: A Review of Issues, Evidence and Policy," Urban Studies, Urban Studies Journal Limited, vol. 33(1), pages 7-35, February.
    10. Tso, Geoffrey K.F. & Guan, Jingjing, 2014. "A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption," Energy, Elsevier, vol. 66(C), pages 722-731.
    11. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    12. Reames, Tony Gerard, 2016. "Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic disparities in urban residential heating energy efficiency," Energy Policy, Elsevier, vol. 97(C), pages 549-558.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    2. Park, Jongmun & Yun, Sun-Jin, 2022. "Social determinants of residential electricity consumption in Korea: Findings from a spatial panel model," Energy, Elsevier, vol. 239(PE).
    3. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    4. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    5. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    6. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    7. Javier Bueno & Desiderio Romero-Jordán & Pablo del Río, 2020. "Analysing the Drivers of Electricity Demand in Spain after the Economic Crisis," Energies, MDPI, vol. 13(20), pages 1-18, October.
    8. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    9. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Energy-Related Behaviour of Consumers from the Silesia Province (Poland)—Towards a Low-Carbon Economy," Energies, MDPI, vol. 14(8), pages 1-23, April.
    10. Xiaolei Huang & Jinpei Ou & Yingjian Huang & Shun Gao, 2023. "Exploring the Effects of Socioeconomic Factors and Urban Forms on CO 2 Emissions in Shrinking and Growing Cities," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    11. Davide Burgalassi & Tommaso Luzzati, 2015. "Urban spatial structure and environmental emissions: a survey of the literature and some empirical evidence for Italian NUTS-3 regions," Discussion Papers 2015/199, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    12. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    13. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    14. Sijousa Basumatary & Mridula Devi & Konita Basumatary, 2021. "Determinants of Household Electricity Demand in Rural India: A Case Study of the Impacts of Government Subsidies and Surcharges," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 243-249.
    15. Saeed Ghavidelfar & Asaad Y. Shamseldin & Bruce W. Melville, 2017. "Future implications of urban intensification on residential water demand," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(10), pages 1809-1824, October.
    16. Philipp Rode & Alexandra Gomes & Muhammad Adeel & Fizzah Sajjad & Andreas Koch & Syed Monjur Murshed, 2020. "Between Abundance and Constraints: The Natural Resource Equation of Asia’s Diverging, Higher-Income City Models," Land, MDPI, vol. 9(11), pages 1-33, October.
    17. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    18. Hankey, Steve & Marshall, Julian D., 2010. "Impacts of urban form on future US passenger-vehicle greenhouse gas emissions," Energy Policy, Elsevier, vol. 38(9), pages 4880-4887, September.
    19. Yi Song Liu & Tan Yigitcanlar & Mirko Guaralda & Kenan Degirmenci & Aaron Liu & Michael Kane, 2022. "Leveraging the Opportunities of Wind for Cities through Urban Planning and Design: A PRISMA Review," Sustainability, MDPI, vol. 14(18), pages 1-78, September.
    20. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15685-:d:1275466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.